59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep reinforcement learning for de novo drug design

      Science advances
      American Association for the Advancement of Science (AAAS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have devised and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—generative and predictive—that are trained separately but are used jointly to generate novel targeted chemical libraries. ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES) strings only. Generative models are trained with a stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo–generated compounds. In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to bias the generation of new chemical structures toward those with the desired physical and/or biological properties. In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The properties of known drugs. 1. Molecular frameworks.

          In order to better understand the common features present in drug molecules, we use shape description methods to analyze a database of commercially available drugs and prepare a list of common drug shapes. A useful way of organizing this structural data is to group the atoms of each drug molecule into ring, linker, framework, and side chain atoms. On the basis of the two-dimensional molecular structures (without regard to atom type, hybridization, and bond order), there are 1179 different frameworks among the 5120 compounds analyzed. However, the shapes of half of the drugs in the database are described by the 32 most frequently occurring frameworks. This suggests that the diversity of shapes in the set of known drugs is extremely low. In our second method of analysis, in which atom type, hybridization, and bond order are considered, more diversity is seen; there are 2506 different frameworks among the 5120 compounds in the database, and the most frequently occurring 42 frameworks account for only one-fourth of the drugs. We discuss the possible interpretations of these findings and the way they may be used to guide future drug discovery research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum-chemical insights from deep tensor neural networks

            Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial Intelligence in Precision Cardiovascular Medicine.

              Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI's application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine.
                Bookmark

                Author and article information

                Journal
                10.1126/sciadv.aap7885

                Comments

                Comment on this article