12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future

      ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the potential drought impacts on agricultural production is critical for ensuring global food security. Instead of providing a deterministic estimate, this study investigates the likelihood of yield loss of wheat, maize, rice and soybeans in response to droughts of various intensities in the 10 largest producing countries. We use crop-country specific standardized precipitation index (SPI) and census yield data for 1961–2016 to build a probabilistic modeling framework for estimating yield loss risk under a moderate (−1.2 < SPI < −0.8), severe (−1.5 < SPI < −1.3), extreme (−1.9 < SPI < −1.6) and exceptional (SPI < −2.0) drought. Results show that there is >80% probability that wheat production will fall below its long-term average when experiencing an exceptional drought, especially in USA and Canada. As for maize, India shows the highest risk of yield reduction under droughts, while rice is the crop that is most vulnerable to droughts in Vietnam and Thailand. Risk of drought-driven soybean yield loss is the highest in USA, Russian and India. Yield loss risk tends to grow faster when experiencing a shift in drought severity from moderate to severe than that from extreme to the exceptional category, demonstrating the non-linear response of yield to the increase in drought severity. Sensitivity analysis shows that temperature plays an important role in determining drought impacts, through reducing or amplifying drought-driven yield loss risk. Compared to present conditions, an ensemble of 11 crop models simulated an increase in yield loss risk by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1 for wheat, maize, rice and soybeans by the end of 21st century, respectively, without considering the benefits of CO2 fertilization and adaptations. This study highlights the non-linear response of yield loss risk to the increase in drought severity. This implies that adaptations should be more targeted, considering not only the crop type and region but also the specific drought severity of interest.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          The DSSAT cropping system model

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An overview of APSIM, a model designed for farming systems simulation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global scale climate–crop yield relationships and the impacts of recent warming

                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                March 2019
                March 2019
                : 654
                : 811-821
                Article
                10.1016/j.scitotenv.2018.10.434
                167838f5-13cb-46f5-98af-0ef4461815cf
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article