28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells

      Molecules
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells.

          Persistent activation of signal transducers and activator of transcription 3 (STAT3) has been closely related to growth, survival, proliferation, metastasis, and angiogenesis of various cancer cells, and thus its inhibition can be considered a potential therapeutic strategy. In this study, we investigated the role of bergamottin (BGM) obtained from grapefruit juice in abrogating the constitutive STAT3 activation in multiple myeloma (MM) cells. This suppression was mediated through the inhibition of phosphorylation of Janus-activated kinase (JAK) 1/2 and c-Src. Pervanadate reversed the BGM induced down-regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase (PTP). Furthermore, BGM induced the expression of the tyrosine phosphatase SHP-1, and gene silencing of the SHP-1 by small interfering RNA abolished the ability of BGM to inhibit STAT3 activation, suggesting a critical role for SHP-1 in the action of BGM. BGM also downregulated the expression of STAT3-regulated gene products such as COX-2, VEGF, cyclin D1, survivin, IAP-1, Bcl-2, and Bcl-xl in MM cells. This correlated with induction of substantial apoptosis as indicated by an increase in the sub-G1 cell population and caspase-3 induced PARP cleavage. Also, this agent significantly potentiated the apoptotic effects of bortezomib and thalidomide in MM cells. Overall, these results suggest that BGM is a novel blocker of STAT3 activation pathway thus may have a potential in therapy of MM and other cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer.

            The transcription factor Forkhead Box P3 (Foxp3) has been shown to play important roles in the occurring of regulatory T cells (Tregs). Limited evidence indicated that it was also expressed in tissues other than thymus and spleen, while, very recently, it was identified as a suppressor gene in breast cancer. However, the precise role and molecular mechanism of the action of Foxp3 in ovarian cancer remained unclear. To elucidate the function of Foxp3, we examined the expression of Foxp3 in ovarian cancerous cells and the consequences of up-regulation of Foxp3 in epithelial ovarian cancer cell lines, respectively. By multiple cellular and molecular approaches such as gene transfection, CCK-8 assay, flow cytometry, RT-PCR, in-cell western, wound healing assay, and invasion assay, we found that Foxp3 was weakly/no expressed in ovarian cancerous cells. Up-regulation of Foxp3 inhibited cell proliferation, decreased cell migration, and reduced cell invasion. Compared with control, Foxp3 up-regulated cells showed decreased expression of Ki-67 and cyclin-dependent kinases (CDKs). Moreover, up-regulation of Foxp3 reduced the expression of matrix metalloproteinase-2 (MMP-2) and urokinase-type plasminogen activator (uPA), resulting in the inhibition of cell migration and invasion. In addition, Foxp3 up-regulation inhibited the activation of mammalian target of rapamycin (mTOR) and NF-kappaB signaling. These findings suggested that up-regulation of Foxp3 could be a novel approach for inhibiting ovarian cancer progression. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice.

              The present study is to investigate the possible hypoglycemic and hypolipidemic effects of neohesperidin (NHP) derived from Citrus aurantium L. in vivo. KK-A(y) mice were used as the diabetic experimental model, whereas C57BL/6 mice were used as normal control for a 6-week study. Treatment of NHP significantly decreased fasting glucose, serum glucose, and glycosylated serum protein (GSP) in KK-A(y) mice. It significantly elevated oral glucose tolerance and insulin sensitivity and decreased insulin resistance in the diabetic mice. In addition, NHP significantly decreased serum triglycerides (TG), total cholesterol (TCH), leptin level, and liver index in the KK-A(y) mice. NHP also inhibited lipid accumulation in the liver and decreased the size of epididymal adipocyte in the KK-A(y) mice. Gene expression of stearoyl-CoA desaturase 1 (SCD-1) and fatty acid synthase (FAS) were significantly inhibited, whereas the expression of acyl-CoA oxidase (ACOX) was significantly induced by NHP treatment in the liver of KK-A(y) mice. In addition, elevated level of phosphorylation of hepatic AMPK was observed in NHP-treated mice. Therefore, the activation of the AMPK pathway and regulation of its target genes, including SCD-1, FAS, and ACOX, may play important roles in the hypoglycemic and hypolipidemic effects of NHP in vivo, and NHP may have great potential in the prevention of diabetes and its complications.
                Bookmark

                Author and article information

                Journal
                10.3390/molecules22071227
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article