59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mysterious Morphology of MRC0943-242 as Revealed by ALMA and MUSE

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a pilot study of the z=2.923 radio galaxy MRC0943-242, where we for the first time combine information from ALMA and MUSE data cubes. Even with modest integration times, we disentangle an AGN and a starburst dominated set of components. These data reveal a highly complex morphology, as the AGN, starburst, and molecular gas components show up as widely separated sources in dust continuum, optical continuum and CO line emission observations. CO(1-0) and CO(8-7) line emission suggest that there is a molecular gas reservoir offset from both the dust and the optical continuum that is located ~90kpc from the AGN. The UV line emission has a complex structure in emission and absorption. The line emission is mostly due to i) a large scale ionisation cone energised by the AGN, ii) a Ly-alpha emitting bridge of gas between the radio galaxy and a heavily star-forming set of components. Strangely, the ionisation cone has no Ly-alpha emission. We find this is due to an optically thick layer of neutral gas with unity covering fraction spread out over a region of at least ~100kpc from the AGN. Other, less thick absorption components are associated with Ly-alpha emitting gas within a few tens of kpc from the radio galaxy and are connected by a bridge of emission. We speculate that this linear structure of dust, Ly-alpha and CO emission, and the redshifted absorption seen in the circum-nuclear region may represent an accretion flow feeding gas into this massive AGN host galaxy.

          Related collections

          Author and article information

          Journal
          10.1051/0004-6361/201526858
          1510.03442

          Galaxy astrophysics
          Galaxy astrophysics

          Comments

          Comment on this article