50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mutation of TBCE causes hypoparathyroidism–retardation–dysmorphism and autosomal recessive Kenny–Caffey syndrome

      Nature genetics
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats.

          Lissencephaly (agyria-pachygyria) is a human brain malformation manifested by a smooth cerebral surface and abnormal neuronal migration. Identification of the gene(s) involved in this disorder would facilitate molecular dissection of normal events in brain development. Type 1 lissencephaly occurs either as an isolated abnormality or in association with dysmorphic facial appearance in patients with Miller-Dieker syndrome. About 15% of patients with isolated lissencephaly and more than 90% of patients with Miller-Dieker syndrome have microdeletions in a critical 350-kilobase region in chromosome 17p13.3 (ref. 6). These deletions are hemizygous, so haplo-insufficiency for a gene in this interval is implicated. Here we report the cloning of a gene (LIS-1, lissencephaly-1) in 17p13.3 that is deleted in Miller-Dieker patients. Non-overlapping deletions involving either the 5' or 3' end of the gene were found in two patients, identifying LIS-1 as the disease gene. The deduced amino-acid sequence shows significant homology to beta-subunits of heterotrimeric G proteins, suggesting that it could possibly be involved in a signal transduction pathway crucial for cerebral development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein.

            X-linked lissencephaly and "double cortex" are allelic human disorders mapping to Xq22.3-Xq23 associated with arrest of migrating cerebral cortical neurons. We identified a novel 10 kb brain-specific cDNA interrupted by a balanced translocation in an XLIS patient that encodes a novel 40 kDa predicted protein named Doublecortin. Four double cortex/X-linked lissencephaly families and three sporadic double cortex patients show independent doublecortin mutations, at least one of them a de novo mutation. Doublecortin contains a consensus Abl phosphorylation site and other sites of potential phosphorylation. Although Doublecortin does not contain a kinase domain, it is homologous to the amino terminus of a predicted kinase protein, indicating a likely role in signal transduction. Doublecortin, along with the newly characterized mDab1, may define an Abl-dependent pathway regulating neuronal migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome.

              X-SCLH/LIS syndrome is a neuronal migration disorder with disruption of the six-layered neocortex. It consists of subcortical laminar heterotopia (SCLH, band heterotopia, or double cortex) in females and lissencephaly (LIS) in males, leading to epilepsy and cognitive impairment. We report the characterization of a novel CNS gene encoding a 40 kDa predicted protein that we named Doublecortin and the identification of mutations in four unrelated X-SCLH/LIS cases. The predicted protein shares significant homology with the N-terminal segment of a protein containing a protein kinase domain at its C-terminal part. This novel gene is highly expressed during brain development, mainly in fetal neurons including precursors. The complete disorganization observed in lissencephaly and heterotopia thus seems to reflect a failure of early events associated with neuron dispersion.
                Bookmark

                Author and article information

                Journal
                10.1038/ng1012
                http://www.springer.com/tdm

                Comments

                Comment on this article