75
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5′ adenine were improved by rescuing 5′ end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

            A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.

              Gene modifications in animal models have been greatly facilitated through the application of targeted genome editing tools. The prokaryotic CRISPR/Cas9 type II genome editing system has recently been applied in cell lines and vertebrates. However, we still have very limited information about the efficiency of mutagenesis, germline transmission rates and off-target effects in genomes of model organisms. We now demonstrate that CRISPR/Cas9 mutagenesis in zebrafish is highly efficient, reaching up to 86.0%, and is heritable. The efficiency of the CRISPR/Cas9 system further facilitated the targeted knock-in of a protein tag provided by a donor oligonucleotide with knock-in efficiencies of 3.5-15.6%. Mutation rates at potential off-target sites are only 1.1-2.5%, demonstrating the specificity of the CRISPR/Cas9 system. The ease and efficiency of the CRISPR/Cas9 system with limited off-target effects make it a powerful genome engineering tool for in vivo studies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                29 May 2014
                : 9
                : 5
                : e98186
                Affiliations
                [1 ]Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
                [2 ]Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
                [3 ]Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
                [4 ]Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
                [5 ]Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
                Texas A&M University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JAG EV SBT PH LA AP AFS. Performed the experiments: JAG SBT PH LA AP SZ CR. Analyzed the data: JAG EV SBT PH LA AP TGM AFS. Contributed reagents/materials/analysis tools: EV TGM. Contributed to the writing of the manuscript: JAG EV SBT AFS.

                Article
                PONE-D-14-14210
                10.1371/journal.pone.0098186
                4038517
                24873830
                65b4a9c6-a61d-4ef4-9bf1-df704c518f3f
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 March 2014
                : 18 April 2014
                Page count
                Pages: 8
                Funding
                This research was supported by grants from the American Cancer Society (JAG), Human Frontier Science Program (EV, AP), Damon Runyon Cancer Research Foundation (SBT), EMBO(CR), NSDEG (TGM), Life Sciences Research Foundation (CR), and NIH grants R01 GM056211, R01 HL109525, and R21 HD072733 (JAG, EV, SBT, PH, LA, AP, TGM, SZ, CR, AFS). All authors supported by these grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Agricultural Biotechnology
                Genetically Modified Organisms
                Biotechnology
                Genetic Engineering
                Transgenic Engineering
                Genetics
                Animal Genetics
                Gene Disruption
                Molecular Genetics
                Organisms
                Animals
                Vertebrates
                Fishes
                Osteichthyes
                Zebrafish
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. The Illumina MiSeq sequencing data may be accessed from the NCBI Short Read Archive under project ID: PRJNA245510.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article