128
views
0
recommends
+1 Recommend
2 collections
    1
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence ofin vivoexistence ofBorreliabiofilm in borrelial lymphocytomas

      European Journal of Microbiology and Immunology
      Akademiai Kiado Zrt.

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Biofilms: the matrix revisited.

          Microbes often construct and live within surface-associated multicellular communities known as biofilms. The precise structure, chemistry and physiology of the biofilm all vary with the nature of its resident microbes and local environment. However, an important commonality among biofilms is that their structural integrity critically depends upon an extracellular matrix produced by their constituent cells. Extracellular matrices might be as diverse as biofilms, and they contribute significantly to the organization of the community. This review discusses recent advances in our understanding of the extracellular matrix and its role in biofilm biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms.

            Pseudomonas aeruginosa produces extracellular DNA which functions as a cell-to-cell interconnecting matrix component in biofilms. Comparison of extracellular DNA and chromosomal DNA by the use of polymerase chain reaction and Southern analysis suggested that the extracellular DNA is similar to whole-genome DNA. Evidence that the extracellular DNA in P. aeruginosa biofilms and cultures is generated via lysis of a subpopulation of the bacteria was obtained through experiments where extracellular beta-galactosidase released from lacZ-containing P. aeruginosa strains was assessed. Experiments with the wild type and lasIrhlI, pqsA, pqsL and fliMpilA mutants indicated that the extracellular DNA is generated via a mechanism which is dependent on acyl homoserine lactone and Pseudomonas quinolone signalling, as well as on flagella and type IV pili. Microscopic investigation of flow chamber-grown wild-type P. aeruginosa biofilms stained with different DNA stains suggested that the extracellular DNA is located primarily in the stalks of mushroom-shaped multicellular structures, with a high concentration especially in the outer part of the stalks forming a border between the stalk-forming bacteria and the cap-forming bacteria. Biofilms formed by lasIrhlI, pqsA and fliMpilA mutants contained less extracellular DNA than biofilms formed by the wild type, and the mutant biofilms were more susceptible to treatment with sodium dodecyl sulphate than the wild-type biofilm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pseudomonas aeruginosa biofilms in cystic fibrosis.

              The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. In CF lungs, the polysaccharide alginate is the major part of the P. aeruginosa biofilm matrix. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and resist phagocytosis, as well as other components of the innate and the adaptive immune system. As a consequence, a pronounced antibody response develops, leading to immune complex-mediated chronic inflammation, dominated by polymorphonuclear leukocytes. The chronic inflammation is the major cause of the lung tissue damage in CF. Biofilm growth in CF lungs is associated with an increased frequency of mutations, slow growth and adaptation of the bacteria to the conditions in the lungs, and to antibiotic therapy. Low bacterial metabolic activity and increase of doubling times of the bacterial cells in CF lungs are responsible for some of the tolerance to antibiotics. Conventional resistance mechanisms, such as chromosomal β-lactamase, upregulated efflux pumps, and mutations of antibiotic target molecules in the bacteria, also contribute to the survival of P. aeruginosa biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy, and they can be treated by chronic suppressive therapy.
                Bookmark

                Author and article information

                Journal
                10.1556/1886.2015.00049

                Comments

                Comment on this article