65
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic hypoxia-induced epithelial-to-mesenchymal transition (EMT) is a crucial process in renal fibrogenesis. Egr-1, as a transcription factor, has been proven to be important in promoting EMT. However, whether it functions in hypoxia-induced renal tubular EMT has not been fully elucidated.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.

          Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal failure. When advanced, tubulointerstitial damage is associated with the loss of peritubular capillaries. Associated interstitial fibrosis impairs oxygen diffusion and supply to tubular and interstitial cells. Hypoxia of tubular cells leads to apoptosis or epithelial-mesenchymal transdifferentiation. This in turn exacerbates fibrosis of the kidney and subsequent chronic hypoxia, setting in train a vicious cycle whose end point is ESRD. A number of mechanisms that induce tubulointerstitial hypoxia at an early stage have been identified. Glomerular injury and vasoconstriction of efferent arterioles as a result of imbalances in vasoactive substances decrease postglomerular peritubular capillary blood flow. Angiotensin II not only constricts efferent arterioles but, via its induction of oxidative stress, also hampers the efficient utilization of oxygen in tubular cells. Relative hypoxia in the kidney also results from increased metabolic demand in tubular cells. Furthermore, renal anemia hinders oxygen delivery. These factors can affect the kidney before the appearance of significant pathologic changes in the vasculature and predispose the kidney to tubulointerstitial injury. Therapeutic approaches that target the chronic hypoxia should prove effective against a broad range of renal diseases. Current modalities include the improvement of anemia with erythropoietin, the preservation of peritubular capillary blood flow by blockade of the renin-angiotensin system, and the use of antioxidants. Recent studies have elucidated the mechanism of hypoxia-induced transcription, namely that prolyl hydroxylase regulates hypoxia-inducible factor. This has given hope for the development of novel therapeutic approaches against this final common pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail.

            Snail is a transcription repressor that plays a central role in the epithelium-mesenchyme transition (EMT), by which epithelial cells lose their polarity. Claudins and occludin are integral membrane proteins localized at tight junctions, which are responsible for establishing and maintaining epithelial cell polarity. We examined the relationship between Snail and the promoter activity of claudins and occludin. When Snail was overexpressed in cultured mouse epithelial cells, EMT was induced with concomitant repression of the expression of claudins and occludin not only at the protein but also at the mRNA level. We then isolated the promoters of genes encoding claudins and occludin, in which multiple E-boxes were identified. Transfection experiments with various promoter constructs as well as electrophoretic mobility assays revealed that Snail binds directly to the E-boxes of the promoters of claudin/occludin genes, resulting in complete repression of their promoter activity. Because the gene encoding E-cadherin was also reported to be repressed by Snail, we concluded that EMT was associated with the simultaneous repression of the genes encoding E-cadherin and claudins/occludin (i.e. the expression of adherens and tight junction adhesion molecules, respectively).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of life and death by the zinc finger transcription factor Egr-1.

              The biosynthesis of the zinc finger transcription factor Egr-1 is stimulated by many extracellular signaling molecules including hormones, neurotransmitters, growth and differentiation factors, and cytotoxic metabolites. The 5'-flanking region of the Egr-1 gene contains genetic elements that are essential in connecting stimulation of the cells with enhanced transcription of the Egr-1 gene, and subsequently, transcription of Egr-1-responsive genes. Thus, Egr-1 links cellular signaling cascades with changes in the gene expression pattern. Many biological functions have been attributed to Egr-1. Here, we discuss evidence for Egr-1 control of cellular proliferation and programmed cell death. Copyright 2002 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Am. J. Nephrol.
                American journal of nephrology
                1421-9670
                0250-8095
                2014
                : 39
                : 5
                Affiliations
                [1 ] Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
                Article
                000362249
                10.1159/000362249
                24819335
                dcc5524d-566b-495d-9fb3-fa0bd8129610
                History

                Comments

                Comment on this article