90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA).

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A panel of experts was convened by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) to update the 2010 clinical practice guideline on Clostridium difficile infection (CDI) in adults. The update, which has incorporated recommendations for children (following the adult recommendations for epidemiology, diagnosis, and treatment), includes significant changes in the management of this infection and reflects the evolving controversy over best methods for diagnosis. Clostridium difficile remains the most important cause of healthcare-associated diarrhea and has become the most commonly identified cause of healthcare-associated infection in adults in the United States. Moreover, C. difficile has established itself as an important community pathogen. Although the prevalence of the epidemic and virulent ribotype 027 strain has declined markedly along with overall CDI rates in parts of Europe, it remains one of the most commonly identified strains in the United States where it causes a sizable minority of CDIs, especially healthcare-associated CDIs. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, infection prevention, and environmental management.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection.

          Clostridium difficile infection (CDI) is a gastrointestinal disease believed to be causally related to perturbations to the intestinal microbiota. When standard treatment has failed, intestinal microbiota transplantation (IMT) is an alternative therapy for patients with CDI. IMT involves infusing intestinal microorganisms (in a suspension of healthy donor stool) into the intestine of a sick patient to restore the microbiota. However, protocols and reported efficacy for IMT vary. We conducted a systematic literature review of IMT treatment for recurrent CDI and pseudomembranous colitis. In 317 patients treated across 27 case series and reports, IMT was highly effective, showing disease resolution in 92% of cases. Effectiveness varied by route of instillation, relationship to stool donor, volume of IMT given, and treatment before infusion. Death and adverse events were uncommon. These findings can guide physicians interested in implementing the procedure until better designed studies are conducted to confirm best practices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe.

            Toxins A and B are the primary virulence factors of Clostridium difficile. Since 2002, an epidemic of C difficile-associated disease with increased morbidity and mortality has been present in Quebec province, Canada. We characterised the dominant strain of this epidemic to determine whether it produces higher amounts of toxins A and B than those produced by non-epidemic strains. We obtained isolates from 124 patients from Centre Hospitalier Universitaire de Sherbrooke in Quebec. Additional isolates from the USA, Canada, and the UK were included to increase the genetic diversity of the toxinotypes tested. Isolate characterisation included toxinotyping, pulsed-field gel electrophoresis (PFGE), PCR ribotyping, detection of a binary toxin gene, and detection of deletions in a putative negative regulator for toxins A and B (tcdC). By use of an enzyme-linked immunoassay, we measured the in-vitro production of toxins A and B by epidemic strain and non-dominant strain isolates. The epidemic strain was characterised as toxinotype III, North American PFGE type 1, and PCR-ribotype 027 (NAP1/027). This strain carried the binary toxin gene cdtB and an 18-bp deletion in tcdC. We isolated this strain from 72 patients with C difficile-associated disease (58 [67%] of 86 with health-care-associated disease; 14 [37%] of 38 with community-acquired disease). Peak median (IQR) toxin A and toxin B concentrations produced in vitro by NAP1/027 were 16 and 23 times higher, respectively, than those measured in isolates representing 12 different PFGE types, known as toxinotype 0 (toxin A, median 848 microg/L [IQR 504-1022] vs 54 microg/L [23-203]; toxin B, 180 microg/L [137-210] vs 8 microg/L [5-25]; p<0.0001 for both toxins). The severity of C difficile-associated disease caused by NAP1/027 could result from hyperproduction of toxins A and B. Dissemination of this strain in North America and Europe could lead to important changes in the epidemiology of C difficile-associated disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diverse sources of C. difficile infection identified on whole-genome sequencing.

              It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).
                Bookmark

                Author and article information

                Journal
                Clin. Infect. Dis.
                Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
                Oxford University Press (OUP)
                1537-6591
                1058-4838
                March 19 2018
                : 66
                : 7
                Affiliations
                [1 ] Centers for Disease Control and Prevention, Atlanta, Georgia.
                [2 ] Edward Hines Jr Veterans Administration Hospital, Hines.
                [3 ] Loyola University Medical Center, Maywood, Illinois.
                [4 ] St Luke's Hospital, Duluth, Minnesota.
                [5 ] Johns Hopkins University School of Medicine, Baltimore, Maryl.
                [6 ] Children's Hospital of Philadelphia, Pennsylvania.
                [7 ] Washington University School of Medicine, St Louis, Missouri.
                [8 ] University of Houston College of Pharmacy, Texas.
                [9 ] Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
                [10 ] McGill University Health Centre, McGill University, Montréal, Québec, Canada.
                [11 ] Boston Children's Hospital, Massachusetts.
                [12 ] Leeds Teaching Hospitals NHS Trust, United Kingdom.
                Article
                4855916
                10.1093/cid/cix1085
                6018983
                29462280
                236f88a3-c2ec-4dcc-b0b4-7adc7e92841c
                History

                Comments

                Comment on this article