15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Statins, Muscle Disease and Mitochondria

      Journal of clinical medicine
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S)

          Drug therapy for hypercholesterolaemia has remained controversial mainly because of insufficient clinical trial evidence for improved survival. The present trial was designed to evaluate the effect of cholesterol lowering with simvastatin on mortality and morbidity in patients with coronary heart disease (CHD). 4444 patients with angina pectoris or previous myocardial infarction and serum cholesterol 5.5-8.0 mmol/L on a lipid-lowering diet were randomised to double-blind treatment with simvastatin or placebo. Over the 5.4 years median follow-up period, simvastatin produced mean changes in total cholesterol, low-density-lipoprotein cholesterol, and high-density-lipoprotein cholesterol of -25%, -35%, and +8%, respectively, with few adverse effects. 256 patients (12%) in the placebo group died, compared with 182 (8%) in the simvastatin group. The relative risk of death in the simvastatin group was 0.70 (95% CI 0.58-0.85, p = 0.0003). The 6-year probabilities of survival in the placebo and simvastatin groups were 87.6% and 91.3%, respectively. There were 189 coronary deaths in the placebo group and 111 in the simvastatin group (relative risk 0.58, 95% CI 0.46-0.73), while noncardiovascular causes accounted for 49 and 46 deaths, respectively. 622 patients (28%) in the placebo group and 431 (19%) in the simvastatin group had one or more major coronary events. The relative risk was 0.66 (95% CI 0.59-0.75, p < 0.00001), and the respective probabilities of escaping such events were 70.5% and 79.6%. This risk was also significantly reduced in subgroups consisting of women and patients of both sexes aged 60 or more. Other benefits of treatment included a 37% reduction (p < 0.00001) in the risk of undergoing myocardial revascularisation procedures. This study shows that long-term treatment with simvastatin is safe and improves survival in CHD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of statins on skeletal muscle function.

            Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (P<0.0001) with atorvastatin. There were no significant changes in several measures of muscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An assessment by the Statin Muscle Safety Task Force: 2014 update.

              The National Lipid Association's Muscle Safety Expert Panel was charged with the duty of examining the definitions for statin-associated muscle adverse events, development of a clinical index to assess myalgia, and the use of diagnostic neuromuscular studies to investigate muscle adverse events. We provide guidance as to when a patient should be considered for referral to neuromuscular specialists and indications for the performance of a skeletal muscle biopsy. Based on this review of evidence, we developed an algorithm for the evaluation and treatment of patients who may be intolerant to statins as the result of adverse muscle events. The panel was composed of clinical cardiologists, clinical lipidologists, an exercise physiologist, and a neuromuscular specialist.
                Bookmark

                Author and article information

                Journal
                10.3390/jcm6080075
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article