9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Texture classification and segmentation using wavelet frames.

      IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes a new approach to the characterization of texture properties at multiple scales using the wavelet transform. The analysis uses an overcomplete wavelet decomposition, which yields a description that is translation invariant. It is shown that this representation constitutes a tight frame of l(2) and that it has a fast iterative algorithm. A texture is characterized by a set of channel variances estimated at the output of the corresponding filter bank. Classification experiments with l(2) Brodatz textures indicate that the discrete wavelet frame (DWF) approach is superior to a standard (critically sampled) wavelet transform feature extraction. These results also suggest that this approach should perform better than most traditional single resolution techniques (co-occurrences, local linear transform, and the like). A detailed comparison of the classification performance of various orthogonal and biorthogonal wavelet transforms is also provided. Finally, the DWF feature extraction technique is incorporated into a simple multicomponent texture segmentation algorithm, and some illustrative examples are presented.

          Related collections

          Author and article information

          Journal
          18291987
          10.1109/83.469936

          Comments

          Comment on this article