42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A review of performance of near-infrared fluorescence imaging devices used in clinical studies.

      1 ,
      The British journal of radiology
      British Institute of Radiology

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new "point-of-care" medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery.

          Optical imaging using near-infrared (NIR) fluorescence provides new prospects for general and oncologic surgery. ICG is currently utilised in NIR fluorescence cancer-related surgery for three indications: sentinel lymph node (SLN) mapping, intraoperative identification of solid tumours, and angiography during reconstructive surgery. Therefore, understanding its advantages and limitations is of significant importance. Although non-targeted and non-conjugatable, ICG appears to be laying the foundation for more widespread use of NIR fluorescence-guided surgery. Copyright © 2011 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping.

            Invisible NIR fluorescent light can provide high sensitivity, high-resolution, and real-time image-guidance during oncologic surgery, but imaging systems that are presently available do not display this invisible light in the context of surgical anatomy. The FLARE imaging system overcomes this major obstacle. Color video was acquired simultaneously, and in real-time, along with two independent channels of NIR fluorescence. Grayscale NIR fluorescence images were converted to visible "pseudo-colors" and overlaid onto the color video image. Yorkshire pigs weighing 35 kg (n = 5) were used for final preclinical validation of the imaging system. A six-patient pilot study was conducted in women undergoing sentinel lymph node (SLN) mapping for breast cancer. Subjects received (99m)Tc-sulfur colloid lymphoscintigraphy. In addition, 12.5 microg of indocyanine green (ICG) diluted in human serum albumin (HSA) was used as an NIR fluorescent lymphatic tracer. The FLARE system permitted facile positioning in the operating room. NIR light did not change the look of the surgical field. Simultaneous pan-lymphatic and SLN mapping was demonstrated in swine using clinically available NIR fluorophores and the dual NIR capabilities of the system. In the pilot clinical trial, a total of nine SLNs were identified by (99m)Tc- lymphoscintigraphy and nine SLNs were identified by NIR fluorescence, although results differed in two patients. No adverse events were encountered. We describe the successful clinical translation of a new NIR fluorescence imaging system for image-guided oncologic surgery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications.

              Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound. Published by Elsevier B.V.
                Bookmark

                Author and article information

                Journal
                Br J Radiol
                The British journal of radiology
                British Institute of Radiology
                1748-880X
                0007-1285
                Jan 2015
                : 88
                : 1045
                Affiliations
                [1 ] Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.
                Article
                10.1259/bjr.20140547
                4277384
                25410320
                c4cef0fe-e5df-43ef-87f6-d39109362e7a
                History

                Comments

                Comment on this article