92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms

      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Ferrozine---a new spectrophotometric reagent for iron

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular electron transfer via microbial nanowires.

            Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Site-directed mutagenesis by overlap extension using the polymerase chain reaction

                Bookmark

                Author and article information

                Journal
                10.1073/pnas.0604517103

                Comments

                Comment on this article