10
views
0
recommends
+1 Recommend
0 collections
    0
    recommends
      • Record: found
      • Abstract: found
      • Article: not found

      Chip-based digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          miRNAs have shown promise as potential biomarkers for acute myocardial infarction (AMI). However, the current used quantitative real-time PCR (qRT-PCR) allows solely for relative expression of nucleic acids and it is susceptible to day-to-day variability, which has limited the validity of using the miRNAs as biomarkers. In this study we explored the technical qualities and diagnostic potential of a new technique, chip-based digital PCR, in quantifying the miRNAs in patients with AMI and ischaemia-reperfusion injury (I/R). In a dilution series of synthetic C.elegans-miR-39, chip-based digital PCR displayed a lower coefficient of variation (8.9% vs 46.3%) and a lower limit of detection (0.2 copies/μL vs 1.1 copies/μL) compared with qRT-PCR. In the serum collected from 24 patients with ST-elevation myocardial infarction (STEMI) and 20 patients with stable coronary artery disease (CAD) patients after percutaneous coronary intervention (PCI), we used qRT-PCR and multiplexed chip-based digital PCR to quantify the serum levels of miRNA-21 and miRNA-499 as they have been validated in AMI in prior studies. In STEMI, I/R injury was assessed via measurement of ST-segment resolution (ST-R). Chip-based digital PCR revealed a statistical significance in the difference of miR-21 levels between stable CAD and STEMI groups (118.8 copies/μL vs 59 copies/μL; P=0.0300), whereas qRT-PCR was unable to reach significance (136.4 copies/μL vs 122.8 copies/μL; P=0.2273). For miR-499 levels, both chip-based digital PCR and qRT-PCR revealed statistically significant differences between stable CAD and STEMI groups (2 copies/μL vs 8.5 copies/μL, P=0.0011; 0 copies/μL vs 19.4 copies/μL; P<0.0001). There was no association between miR-21/499 levels and ST-R post-PCI. Our results show that the chip-based digital PCR exhibits superior technical qualities and promises to be a superior method for quantifying miRNA levels in the circulation, which may become a more accurate and reproducible method for directly quantifying miRNAs, particularly for use in large multi-centre clinical trials.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Methods for the determination of limit of detection and limit of quantitation of the analytical methods

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circulating microRNAs are new and sensitive biomarkers of myocardial infarction

            Aims Circulating microRNAs (miRNAs) may represent a novel class of biomarkers; therefore, we examined whether acute myocardial infarction (MI) modulates miRNAs plasma levels in humans and mice. Methods and results Healthy donors (n = 17) and patients (n = 33) with acute ST-segment elevation MI (STEMI) were evaluated. In one cohort (n = 25), the first plasma sample was obtained 517 ± 309 min after the onset of MI symptoms and after coronary reperfusion with percutaneous coronary intervention (PCI); miR-1, -133a, -133b, and -499-5p were ∼15- to 140-fold control, whereas miR-122 and -375 were ∼87–90% lower than control; 5 days later, miR-1, -133a, -133b, -499-5p, and -375 were back to baseline, whereas miR-122 remained lower than control through Day 30. In additional patients (n = 8; four treated with thrombolysis and four with PCI), miRNAs and troponin I (TnI) were quantified simultaneously starting 156 ± 72 min after the onset of symptoms and at different times thereafter. Peak miR-1, -133a, and -133b expression and TnI level occurred at a similar time, whereas miR-499-5p exhibited a slower time course. In mice, miRNAs plasma levels and TnI were measured 15 min after coronary ligation and at different times thereafter. The behaviour of miR-1, -133a, -133b, and -499-5p was similar to STEMI patients; further, reciprocal changes in the expression levels of these miRNAs were found in cardiac tissue 3–6 h after coronary ligation. In contrast, miR-122 and -375 exhibited minor changes and no significant modulation. In mice with acute hind-limb ischaemia, there was no increase in the plasma level of the above miRNAs. Conclusion Acute MI up-regulated miR-1, -133a, -133b, and -499-5p plasma levels, both in humans and mice, whereas miR-122 and -375 were lower than control only in STEMI patients. These miRNAs represent novel biomarkers of cardiac damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.

              MicroRNAs (miRNAs) are a recently discovered class of endogenous, small, noncoding RNAs that regulate about 30% of the encoding genes of the human genome. However, the role of miRNAs in vascular disease is currently completely unknown. Using microarray analysis, we demonstrated for the first time that miRNAs are aberrantly expressed in the vascular walls after balloon injury. The aberrantly expressed miRNAs were further confirmed by Northern blot and quantitative real-time polymerase chain reaction. Modulating an aberrantly overexpressed miRNA, miR-21, via antisense-mediated depletion (knock-down) had a significant negative effect on neointimal lesion formation. In vitro, the expression level of miR-21 in dedifferentiated vascular smooth muscle cells was significantly higher than that in fresh isolated differentiated cells. Depletion of miR-21 resulted in decreased cell proliferation and increased cell apoptosis in a dose-dependent manner. MiR-21-mediated cellular effects were further confirmed in vivo in balloon-injured rat carotid arteries. Western blot analysis demonstrated that PTEN and Bcl-2 were involved in miR-21-mediated cellular effects. The results suggest that miRNAs are novel regulatory RNAs for neointimal lesion formation. MiRNAs may be a new therapeutic target for proliferative vascular diseases such as atherosclerosis, postangioplasty restenosis, transplantation arteriopathy, and stroke.
                Bookmark

                Author and article information

                Contributors
                marcus.hortmann@universitaets-herzzentrum.de
                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group UK (London )
                1671-4083
                1745-7254
                30 November 2017
                July 2018
                : 39
                : 7
                : 1217-1227
                Affiliations
                [1 ] GRID grid.5963.9, Department of Cardiology and Angiology I, Heart Center Freiburg University, , Faculty of Medicine, University of Freiburg, ; Freiburg, Germany
                [2 ] ISNI 0000 0004 1936 7857, GRID grid.1002.3, Department of Medicine, , Monash University, ; Melbourne, Australia
                [3 ]Department of Medicine I, Lighthouse Core Facility, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
                [4 ] GRID grid.5963.9, Faculty of Biology, , University of Freiburg, ; Freiburg, Germany
                [5 ] ISNI 0000 0000 9760 5620, GRID grid.1051.5, Baker IDI Heart and Diabetes Institute, ; Melbourne, Australia
                [6 ] ISNI 0000 0000 8852 305X, GRID grid.411097.a, Augustinerinnen Hospital, , Academic Teaching Hospital University of Cologne, ; Cologne, Germany
                Article
                PMC6289362 PMC6289362 6289362 89
                10.1038/aps.2017.136
                6289362
                29188800
                d14e4d2d-dec8-4e9d-b468-5046218a6283
                © CPS and SIMM 2018
                History
                : 21 July 2017
                : 10 October 2017
                Categories
                Article
                Custom metadata
                © Shanghai Institute of Materia Medica, CAS and Chinese Pharmacological Society. All rights reserved 2018

                ichaemia-reperfusion injury,micro-RNAs,qRT-PCR,chip-based digital PCR,ST-segment elevation myocardial infarction

                Comments

                Comment on this article