31
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Delayed age-associated decrease in growth hormone pulsatile secretion and increased orexigenic peptide expression in the Lou C/JaLL rat.

      Neuroendocrinology
      Aging, Agouti-Related Protein, Animals, Body Weight, Eating, Gene Expression, Ghrelin, Growth Hormone, secretion, Hypothalamus, physiology, Insulin-Like Growth Factor I, analysis, Intracellular Signaling Peptides and Proteins, genetics, metabolism, Leptin, blood, Neuropeptide Y, Neuropeptides, Peptide Fragments, Peptide Hormones, Pituitary Gland, Pro-Opiomelanocortin, RNA, Messenger, Rats, Rats, Wistar, Reverse Transcriptase Polymerase Chain Reaction

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since modifications in the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis and/or caloric restriction are involved in the ageing process, GH secretory profiles, total IGF-1, ghrelin, and leptin plasma levels and expression of genes implicated in somatotrope axis and food intake regulation in hypothalamus and pituitary were compared in 3-, 12-, and 24-month-old male Lou C/Jall rats and their parent strain, the Wistar rats. The Lou C/Jall strain may appear as a healthy ageing model, since it does not become obese with age and maintains its caloric intake at 2 years of age. The GH pulsatile secretion decreased from 3 months in Wistar, but only after 12 months in Lou C/Jall rats. The IGF-1 levels were lower in Lou C/Jall rats and decreased more steeply with ageing as compared with Wistar rats. The total ghrelin levels were higher in young Lou C/Jall rats than in Wistar rats, but increased similarly with age in both strains. The leptin concentrations increased with ageing only in Wistar rats. By semiquantitative reverse-transcription polymerase chain reaction, pituitary GH secretagogue receptors and GH mRNA levels were more abundant in Lou C/Jall rats, and the latter decreased with ageing in Wistar rats only. Hypothalamic growth-hormone-releasing hormone and GH secretagogue receptor mRNA levels were similar in both strains and transiently increased only in middle-aged Wistar rats. Agouti-related peptide, neuropeptide Y, and orexin mRNA levels were more abundant in the Lou C/Jall rat hypothalamus, and the two former tended to further increase with age only in this strain. Conversely, the hypothalamic pro-opiomelanocortin mRNA levels were higher in old Wistar rats. In conclusion, ageing in Lou C/Jall rats is associated with a delayed decrease in pulsatile GH secretion in the presence of a lower IGF-1 tone and an increase in the expression of orexigenic neuropeptides in the hypothalamus. Copyright 2004 S. Karger AG, Basel.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein.

          The Drosophila melanogaster gene chico encodes an insulin receptor substrate that functions in an insulin/insulin-like growth factor (IGF) signaling pathway. In the nematode Caenorhabditis elegans, insulin/IGF signaling regulates adult longevity. We found that mutation of chico extends fruit fly median life-span by up to 48% in homozygotes and 36% in heterozygotes. Extension of life-span was not a result of impaired oogenesis in chico females, nor was it consistently correlated with increased stress resistance. The dwarf phenotype of chico homozygotes was also unnecessary for extension of life-span. The role of insulin/IGF signaling in regulating animal aging is therefore evolutionarily conserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic pathways that regulate ageing in model organisms.

            Searches for genes involved in the ageing process have been made in genetically tractable model organisms such as yeast, the nematode Caenorhabditis elegans, Drosophila melanogaster fruitflies and mice. These genetic studies have established that ageing is indeed regulated by specific genes, and have allowed an analysis of the pathways involved, linking physiology, signal transduction and gene regulation. Intriguing similarities in the phenotypes of many of these mutants indicate that the mutations may also perturb regulatory systems that control ageing in higher organisms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Extending the lifespan of long-lived mice.

                Bookmark

                Author and article information

                Comments

                Comment on this article