99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synaptic plasticity: multiple forms, functions, and mechanisms.

      Neuropsychopharmacology
      Animals, Models, Neurological, Neuronal Plasticity, physiology, Neurons, Receptors, N-Methyl-D-Aspartate, Synapses, Synaptic Transmission

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity. Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.

          Related collections

          Most cited references331

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term synaptic plasticity.

          Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic plasticity and memory: an evaluation of the hypothesis.

            Changing the strength of connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. In its most general form, the synaptic plasticity and memory hypothesis states that "activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the information storage underlying the type of memory mediated by the brain area in which that plasticity is observed." We outline a set of criteria by which this hypothesis can be judged and describe a range of experimental strategies used to investigate it. We review both classical and newly discovered properties of synaptic plasticity and stress the importance of the neural architecture and synaptic learning rules of the network in which it is embedded. The greater part of the article focuses on types of memory mediated by the hippocampus, amygdala, and cortex. We conclude that a wealth of data supports the notion that synaptic plasticity is necessary for learning and memory, but that little data currently supports the notion of sufficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The medial temporal lobe.

              The medial temporal lobe includes a system of anatomically related structures that are essential for declarative memory (conscious memory for facts and events). The system consists of the hippocampal region (CA fields, dentate gyrus, and subicular complex) and the adjacent perirhinal, entorhinal, and parahippocampal cortices. Here, we review findings from humans, monkeys, and rodents that illuminate the function of these structures. Our analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system (a) is principally concerned with memory, (b) operates with neocortex to establish and maintain long-term memory, and (c) ultimately, through a process of consolidation, becomes independent of long-term memory, though questions remain about the role of perirhinal and parahippocampal cortices in this process and about spatial memory in rodents. Data from neurophysiology, neuroimaging, and neuroanatomy point to a division of labor within the medial temporal lobe. However, the available data do not support simple dichotomies between the functions of the hippocampus and the adjacent medial temporal cortex, such as associative versus nonassociative memory, episodic versus semantic memory, and recollection versus familiarity.
                Bookmark

                Author and article information

                Journal
                17728696
                10.1038/sj.npp.1301559

                Chemistry
                Animals,Models, Neurological,Neuronal Plasticity,physiology,Neurons,Receptors, N-Methyl-D-Aspartate,Synapses,Synaptic Transmission

                Comments

                Comment on this article