Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

CAM and NK Cells

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK) cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM) since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

      Related collections

      Most cited references 127

      • Record: found
      • Abstract: found
      • Article: not found

      Toll-like receptors.

      The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Toll-like receptors: critical proteins linking innate and acquired immunity.

        Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.

          Lymphocytes were originally thought to form the basis of a 'cancer immunosurveillance' process that protects immunocompetent hosts against primary tumour development, but this idea was largely abandoned when no differences in primary tumour development were found between athymic nude mice and syngeneic wild-type mice. However, subsequent observations that nude mice do not completely lack functional T cells and that two components of the immune system-IFNgamma and perforin-help to prevent tumour formation in mice have led to renewed interest in a tumour-suppressor role for the immune response. Here we show that lymphocytes and IFNgamma collaborate to protect against development of carcinogen-induced sarcomas and spontaneous epithelial carcinomas and also to select for tumour cells with reduced immunogenicity. The immune response thus functions as an effective extrinsic tumour-suppressor system. However, this process also leads to the immunoselection of tumour cells that are more capable of surviving in an immunocompetent host, which explains the apparent paradox of tumour formation in immunologically intact individuals.
            Bookmark

            Author and article information

            Affiliations
            simpleDepartment of Immunology, Juntendo University School of Medicine Tokyo, Japan
            Author notes
            For reprints and all correspondence: Kazuyoshi Takeda, Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bukyou-ku, Tokyo 113-8421, Japan. E-mail: ktakeda@ 123456med.juntendo.ac.jp
            Journal
            Evid Based Complement Alternat Med
            Evidence-based Complementary and Alternative Medicine
            Evidence-based Complementary and Alternative Medicine
            Oxford University Press
            1741-427X
            1741-4288
            June 2004
            : 1
            : 1
            : 17-27
            442116
            10.1093/ecam/neh014
            15257322
            © Oxford University Press, 2004.
            Categories
            Reviews

            Comments

            Comment on this article