1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Beneficial and Adverse Effects of cART Affect Neurocognitive Function in HIV-1 Infection: Balancing Viral Suppression against Neuronal Stress and Injury

      ,

      Journal of Neuroimmune Pharmacology

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 276

          • Record: found
          • Abstract: found
          • Article: not found

          The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.

          Chemokines are chemotactic cytokines that activate and direct the migration of leukocytes. There are two subfamilies, the CXC and the CC chemokines. We recently found that the CXC-chemokine stromal cell-derived factor-1 (SDF-1) is a highly efficacious lymphocyte chemoattractant. Chemokines act on responsive leukocyte subsets through G-protein-coupled seven-transmembrane receptors, which are also used by distinct strains of HIV-1 as cofactors for viral entry. Laboratory-adapted and some T-cell-line-tropic (T-tropic) primary viruses use the orphan chemokine receptor LESTR/fusin (also known as fusin), whereas macrophage-tropic primary HIV-1 isolates use CCR-5 and CCR-3 (refs 7-11), which are receptors for known CC chemokines. Testing of potential receptors demonstrated that SDF-1 signalled through, and hence 'adopted', the orphan receptor LESTR, which we therefore designate CXC-chemokine receptor-4 (CXCR-4). SDF-1 induced an increase in intracellular free Ca2+ and chemotaxis in CXCR-4-transfected cells. Because SDF-1 is a biological ligand for the HIV-1 entry cofactor LESTR, we tested whether it inhibited HIV-1. SDF-1 inhibited infection by T-tropic HIV-1 of HeLa-CD4 cells, CXCR-4 transfectants, and peripheral blood mononuclear cells (PBMCs), but did not affect CCR-5-mediated infection by macrophage-tropic (M-tropic) and dual-tropic primary HIV-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1.

            A putative chemokine receptor that we previously cloned and termed LESTR has recently been shown to function as a co-receptor (termed fusin) for lymphocyte-tropic HIV-1 strains. Cells expressing CD4 became permissive to infection with T-cell-line-adapted HIV-1 strains of the syncytium-inducing phenotype after transfection with LESTR/fusin complementary DNA. We report here the indentification of a human chemokine of the CXC type, stromal cell-derived factor 1 (SDF-1), as the natural ligand for LESTR/fusin, and we propose the term CXCR-4 for this receptor, in keeping with the new chemokine-receptor nomenclature. SDF-1 activates Chinese hamster ovary (CHO) cells transfected with CXCR-4 cDNA as well as blood leukocytes and lymphocytes. In cell lines expressing CXCR-4 and CD4, and in blood lymphocytes, SDF-1 is a powerful inhibitor of infection by lymphocyte-tropic HIV-1 strains, whereas the CC chemokines RANTES, MIP-1 alpha and MIP-1 beta, which were shown previously to prevent infection with primary, monocyte-tropic viruses, are inactive. In combination with CC chemokines, which block the infection with monocyte/macrophage-tropic viruses, SDF-1 could help to decrease virus load and prevent the emergence of the syncytium-inducing viruses which are characteristic of the late stages of AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV and antiretroviral therapy in the brain: neuronal injury and repair.

              Approximately 40 million people worldwide are infected with human immunodeficiency virus (HIV). Despite HIV's known propensity to infect the CNS and cause neurological disease, HIV neurocognitive disorders remain under-recognized. Although combination antiretroviral therapy has improved the health of millions of those living with HIV, the penetration into the CNS of many such therapies is limited, and patients' quality of life continues to be diminished by milder, residual neurocognitive impairment. Synaptodendritic neuronal injury is emerging as an important mediator of such deficits in HIV. By carefully selecting specific antiretrovirals and supplementing them with neuroprotective agents, physicians might be able to facilitate innate CNS repair, promoting enhanced synaptodendritic plasticity, neural function and clinical neurological status.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Neuroimmune Pharmacology
                J Neuroimmune Pharmacol
                Springer Science and Business Media LLC
                1557-1890
                1557-1904
                March 2021
                August 06 2019
                March 2021
                : 16
                : 1
                : 90-112
                Article
                10.1007/s11481-019-09868-9
                000c16f4-1070-4851-9334-62422795d369
                © 2021

                Comments

                Comment on this article