Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer

      ,

      Molecular Diagnosis & Therapy

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epi proColon® 2.0 CE is a blood-based test designed to aid in the early detection of colorectal cancer. The test comprises a qualitative assay for the polymerase chain reaction (PCR) detection of methylated Septin9 DNA, the presence of which is associated with colorectal cancer: however, positive results should be verified by colonoscopy or sigmoidoscopy. Epi proColon® 2.0 CE discriminated between patients with colorectal cancer and healthy controls with high clinical sensitivity and specificity in pivotal case-control studies. The sensitivity of the test did not appear to be affected by the tumour location or by patient age or gender. In addition, limited data suggest that Epi proColon® 2.0 CE discriminated between patients with colorectal cancer and healthy controls with higher sensitivity and generally similar specificity to that of the faecal immunochemical test, and with higher sensitivity and specificity to that of the guaiac-based faecal occult blood test (statistical data not available). In an observational study, most patients who refused colonoscopy for screening accepted a non-invasive test option as an alternative, and preferred Epi proColon® 2.0 CE over a stool-based test. Large prospective trials of Epi proColon® 2.0 CE in a screening setting will be required to further elucidate the cost-effectiveness of the test. Nevertheless, currently available data suggests that Epi proColon® 2.0 CE has the potential to be a sensitive and convenient screening option for patients refusing screening by colonoscopy.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: found
          • Article: not found

          DNA methylation biomarkers for blood-based colorectal cancer screening.

          Sensitive, specific blood-based tests are difficult to develop unless steps are taken to maximize performance characteristics at every stage of marker discovery and development. We describe a sieving strategy for identifying high-performing marker assays that detect colorectal cancer (CRC)-specific methylated DNA in plasma. We first used restriction enzyme-based discovery methods to identify marker candidates with obviously different methylation patterns in CRC tissue and nonpathologic tissue. We then used a selection process incorporating microarrays and/or real-time PCR analysis of tissue samples to further test marker candidates for maximum methylation in CRC tissue and minimum amplification in tissues from both healthy individuals and patients with other diseases. Real-time assays of 3 selected markers were validated with plasma samples from 133 CRC patients and 179 healthy control individuals in the same age range. Restriction enzyme-based testing identified 56 candidate markers. This group was reduced to 6 with microarray and real-time PCR testing. Three markers, TMEFF2, NGFR, and SEPT9, were tested with plasma samples. TMEFF2 methylation was detected in 65% [95% confidence interval, 56%-73%] of plasma samples from CRC patients and not detected in 69% (62%-76%) of the controls. The corresponding results for NGFR were 51% (42%-60%) and 84% (77%-89%); for SEPT9, the values were 69% (60%-77%) and 86% (80%-91%). The stringent criteria applied at all steps of the selection and validation process enabled successful identification and ranking of blood-based marker candidates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update

            Biomarkers currently play an important role in the detection and management of patients with several different types of gastrointestinal cancer, especially colorectal, gastric, gastro-oesophageal junction (GOJ) adenocarcinomas and gastrointestinal stromal tumors (GISTs). The aim of this article is to provide updated and evidence-based guidelines for the use of biomarkers in the different gastrointestinal malignancies. Recommended biomarkers for colorectal cancer include an immunochemical-based fecal occult blood test in screening asymptomatic subjects ≥50 years of age for neoplasia, serial CEA levels in postoperative surveillance of stage II and III patients who may be candidates for surgical resection or systemic therapy in the event of distant metastasis occurring, K-RAS mutation status for identifying patients with advanced disease likely to benefit from anti-EGFR therapeutic antibodies and microsatellite instability testing as a first-line screen for subjects with Lynch syndrome. In advanced gastric or GOJ cancers, measurement of HER2 is recommended in selecting patients for treatment with trastuzumab. For patients with suspected GIST, determination of KIT protein should be used as a diagnostic aid, while KIT mutational analysis may be used for treatment planning in patients with diagnosed GISTs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer epigenetics.

              Aberrant DNA methylation of the promoter region is a key mechanism for inactivation of genes that suppress tumorigenesis. Genes that are involved in every step of tumor formation can be silenced by this mechanism. Inhibitors of DNA methylation, such as 5-azadeoxycytidine (5AZA), can reverse this epigenetic event suggesting a potential use in cancer therapy. The structure of chromatin can also play an important role with respect to the regulation of gene expression. Chromatin containing hypoacetylated lysines in histones has a compact structure that is repressive for transcription. Inhibitors of histone deacetylase (HDAC) can convert chromatin to an open structure and activate certain genes that inhibit tumor growth. These HDAC inhibitors also have potential in cancer therapy. A 'cross-talk' between DNA methylation and histone deacetylation can occur and work in concert to silence gene expression. The molecular mechanism involves the attachment of a methylated CpG binding protein (MBP) to the methylated promoters and its recruitment of HDAC to form a complex that suppresses transcription. These two epigenetic modifications represent an interesting target for therapeutic intervention using 5AZA and HDAC inhibitors. These agents in combination have been shown to produce a synergistic reactivation of tumor suppressor genes and an enhanced antineoplastic effect against tumor cells, and should be investigated as a novel form of epigenetic therapy for cancer.
                Bookmark

                Author and article information

                Journal
                Molecular Diagnosis & Therapy
                Mol Diagn Ther
                Springer Science and Business Media LLC
                1177-1062
                1179-2000
                April 2017
                February 2 2017
                April 2017
                : 21
                : 2
                : 225-232
                Article
                10.1007/s40291-017-0259-y
                28155091
                © 2017

                Comments

                Comment on this article