7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Development of an Anti–Claudin-3 and -4 Bispecific Monoclonal Antibody for Cancer Diagnosis and Therapy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin

          Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ∼22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Site-specific antibody drug conjugates for cancer therapy

            Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicted expansion of the claudin multigene family.

              Claudins (Cldn) are essential membrane proteins of tight junctions (TJs), which form the paracellular permselective barrier. They are produced by a multi-gene family of 24 reported members in mouse and human. Based on a comprehensive search combined with phylogenetic analyses, we identified three novel claudins (claudin-25, -26, and -27). Quantitative RT-PCR revealed that the three novel claudins were expressed in a tissue- and/or developmental stage-dependent manner. Claudins-25 and -26, but not claudin-27, were immunofluorescently localized to TJs when exogenously expressed in cultured MDCK and Eph epithelial cell lines. These findings expand the claudin family to include at least 27 members. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Pharmacology and Experimental Therapeutics
                J Pharmacol Exp Ther
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0022-3565
                1521-0103
                September 09 2014
                October 2014
                October 2014
                August 12 2014
                : 351
                : 1
                : 206-213
                Article
                10.1124/jpet.114.216911
                00175b2d-1865-4b60-bb96-34c84a7796d6
                © 2014
                History

                Comments

                Comment on this article