35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin Enhances Neurogenesis and Cognition in Aged Rats: Implications for Transcriptional Interactions Related to Growth and Synaptic Plasticity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear.

          Methodology

          We assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via exon array analysis of cortical and hippocampal mRNA transcription. The results revealed a transcriptional network interaction of genes involved in neurotransmission, neuronal development, signal transduction, and metabolism in response to the curcumin treatment.

          Conclusions

          The results suggest a neurogenesis- and cognition-enhancing potential of prolonged curcumin treatment in aged rats, which may be due to its diverse effects on genes related to growth and plasticity.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Milestones of neuronal development in the adult hippocampus.

            Adult hippocampal neurogenesis originates from precursor cells in the adult dentate gyrus and results in new granule cell neurons. We propose a model of the development that takes place between these two fixed points and identify several developmental milestones. From a presumably bipotent radial-glia-like stem cell (type-1 cell) with astrocytic properties, development progresses over at least two stages of amplifying lineage-determined progenitor cells (type-2 and type-3 cells) to early postmitotic and to mature neurons. The selection process, during which new neurons are recruited into function, and other regulatory influences differentially affect the different stages of development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial memory, recognition memory, and the hippocampus.

              There is wide agreement that spatial memory is dependent on the integrity of the hippocampus, but the importance of the hippocampus for nonspatial tasks, including tasks of object recognition memory is not as clear. We examined the relationship between hippocampal lesion size and both spatial memory and object recognition memory in rats. Spatial memory was impaired after bilateral dorsal hippocampal lesions that encompassed 30-50% total volume, and as lesion size increased from 50% to approximately 100% of total hippocampal volume, performance was similarly impaired. In contrast, object recognition was intact after dorsal hippocampal lesions that damaged 50-75% of total hippocampal volume and was impaired only after larger lesions that encompassed 75-100% of hippocampal volume. Last, ventral hippocampal lesions that encompassed approximately 50% of total hippocampal volume impaired spatial memory but did not affect object recognition memory. These findings show that the hippocampus is important for both spatial memory and recognition memory. However, spatial memory performance requires more hippocampal tissue than does recognition memory.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 February 2012
                : 7
                : 2
                : e31211
                Affiliations
                [1 ]Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
                [2 ]Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
                [3 ]Unilever R&D, Vlaardingen, The Netherlands
                [4 ]Unilever R&D, Shanghai, China
                [5 ]Unilever R&D, Bangalore, India
                Université Pierre et Marie Curie, France
                Author notes

                Conceived and designed the experiments: YH XC ZZ ESM JKT JX. Performed the experiments: SD QZ YD CL. Analyzed the data: XC ZZ. Contributed reagents/materials/analysis tools: XC ZZ. Wrote the paper: XC ZZ YH ESM. Obtained permission for use of Laboratory animal facility: XC.

                Article
                PONE-D-11-21088
                10.1371/journal.pone.0031211
                3281036
                22359574
                0018d9ba-23c9-4bad-b3e6-44227089d42c
                Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 October 2011
                : 4 January 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biochemistry
                Neurochemistry
                Genomics
                Model Organisms
                Animal Models
                Neuroscience
                Cognitive Neuroscience
                Medicine
                Neurology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article