41
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      To learn more about AK Journals, please click here

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of antibiotic and disinfectant susceptibility in biofilm-forming Acinetobacter baumannii: A focus on environmental isolates

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clinical role of Acinetobacter baumannii has been highlighted in numerous infectious syndromes with a high mortality rate, due to the high prevalence of multidrug-resistant (MDR) isolates. The treatment and eradication of this pathogen is hindered by biofilm-formation, providing protection from noxious environmental factors and antimicrobials. The aim of this study was to assess the antibiotic susceptibility, antiseptic susceptibility and biofilm-forming capacity using phenotypic methods in environmental A. baumannii isolates. One hundred and fourteen ( n = 114) isolates were collected, originating from various environmental sources and geographical regions. Antimicrobial susceptibility testing was carried out using the disk diffusion method, while antiseptic susceptibility was performed using the agar dilution method. Determination of biofilm-forming capacity was carried out using a microtiter-plate based method. Resistance in environmental A. baumannii isolates were highest for ciprofloxacin (64.03%, n = 73), levofloxacin (62.18%, n = 71) and trimethoprim-sulfamethoxazole (61.40%, n = 70), while lowest for colistin (1.75%, n = 2). Efflux pump overexpression was seen in 48.25% of isolates ( n = 55), 49.12% ( n = 56) were classified as MDR. 6.14% ( n = 7), 9.65% ( n = 11), 24.65% ( n = 28) and 59.65% ( n = 68) of isolates were non-biofilm producers, weak, medium, and strong biofilm producers, respectively. No significant differences were observed between non-MDR vs. MDR isolates regarding their distribution of biofilm-producers ( P = 0.655). The MIC ranges for the tested antiseptics were as follows: benzalkonium chloride 16–128 μg mL −1, chlorhexidine digluconate 4–128 μg mL −1, formaldehyde 64–256 μg mL −1 and triclosan 2–16 μg mL −1, respectively. The conscientious use of antiseptics, together with periodic surveillance, is essential to curb the spread of these bacteria, and to maintain current infection prevention capabilities.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            • Record: found
            • Abstract: found
            • Article: not found

            Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

            Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci.

              The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories.

                Author and article information

                Contributors
                Journal
                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                EUJMI
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                2062-509X
                2062-8633
                05 March 2024
                June 2024
                : 14
                : 2
                : 126-133
                Affiliations
                [1 ]Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged , Tisza Lajos krt. 64-66., 6720 Szeged, Hungary
                [2 ]Department of Medical Microbiology and Immunology, University of Pécs Medical School , Szigeti út 12, 7624 Pécs, Hungary
                [3 ]Department of Pharmaceutics, Dow College of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Dow University of Health Sciences , OJHA Campus, Karachi, Pakistan
                [4 ]Department of Natural Products and Alternative Medicine, Division of Microbiology and Immunology, Faculty of Pharmacy, University of Tabuk , Tabuk 71491, Saudi Arabia
                [5 ]Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, 71515, Egypt
                [6 ]Radiology Unit, Giovanni Paolo II Hospital , ASL Gallura, 07026 Olbia, Italy
                [7 ]Hospital Pharmacy, Giovanni Paolo II Hospital , ASL Gallura, 07026 Olbia, Italy
                [8 ]Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari , 07100 Sassari, Italy
                Author notes
                [* ]Corresponding author. Tel.: +36 62 342 532. E-mail: mariopharma92@ 123456gmail.com
                Author information
                https://orcid.org/0000-0003-1270-0365
                Article
                10.1556/1886.2024.00014
                11097793
                38441568
                001a5242-8e8b-4380-8d62-10e3eed3fb20
                © 2024 The Author(s)

                Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated. (SID_1)

                History
                : 04 February 2024
                : 20 February 2024
                Page count
                Tables: 2, Equations: 1, References: 62, Pages: 08
                Funding
                Funded by: National Research Development and Innovation Fund
                Award ID: ÚNKP-23-1-SZTE-146
                Categories
                Article
                Custom metadata
                1

                acinetobacter baumannii,antimicrobial resistance,antiseptic resistance,mdr,biofilm-formation,environmental,phenotypic assay

                Comments

                Comment on this article

                Related Documents Log