+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean.

      Plant physiology
      Amino Acid Sequence, Blotting, Northern, Blotting, Southern, Fabaceae, genetics, metabolism, physiology, Heat-Shock Proteins, Hot Temperature, Molecular Sequence Data, Plant Leaves, Plants, Medicinal, Polymerase Chain Reaction, Protozoan Proteins, Sequence Alignment

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Acquired thermotolerance (AT) is the ability of cells to survive a normally lethal temperature treatment as a consequence of pretreatment at an elevated but sublethal temperature. In yeast and cyanobacteria, the expression of the HSP100/ClpB protein is required for the AT response. To determine whether the HSP100/ClpB protein is associated with this response in lima bean (Phaseolus lunatus), we have cloned an HSP100/ClpB homolog and assessed expression of the two gene copies under heat stress conditions, which induce AT. Transcription of the cytoplasmically localized HSP100/ClpB protein genes is stringently controlled by heat stress in both of the laboratory and field heat stress conditions. From a heat-induced cDNA library, we identified a clone of a putative chloroplast-targeted (cp) HSP100/ClpB protein gene sequence. The cp HSP100/ClpB protein genes are constitutively expressed, but transcript levels increase post-heat stress in laboratory heat stress experiments. In field conditions the genes for the cp HSP100/ClpB are constitutively expressed. Although we were unable to correlate differences in the timing of AT response with the expression or genetic structure of the HSP100/ClpB genes in heat-tolerant or -sensitive varieties of lima bean, we clearly demonstrate the association of expression of HSP100/ClpB proteins with heat response in this species.

          Related collections

          Author and article information


          Comment on this article