16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating the genus Cespitularia MilneEdwards & Haime, 1850 with descriptions of new genera of the family Xeniidae (Octocorallia, Alcyonacea)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Several species of the family Xeniidae , previously assigned to the genus Cespitularia Milne Edwards & Haime, 1850 are revised. Based on the problematical identity and status of the type of this genus, it became apparent that the literature has introduced misperceptions concerning its diagnosis. A consequent examination of the type colonies of Cespitularia coerulea May, 1898 has led to the establishment of the new genus Conglomeratusclera gen. n. and similarly to the assignment of Cespitularia simplex Thomson & Dean, 1931 to the new genus, Caementabunda gen. n. Both new genera are described and depicted and both feature unique sclerite morphology, further highlighting the importance of sclerite microstructure for generic position among Xeniidae . Freshly collected material was subjected to molecular phylogenetic analysis, whose results substantiated the taxonomic assignment of the new genera, as well as the synonymies of several others.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Limitations of mitochondrial gene barcoding in Octocorallia.

          The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy. © 2010 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences.

            Despite their abundance and ecological importance in a wide variety of shallow and deep water marine communities, octocorals (soft corals, sea fans, and sea pens) are a group whose taxonomy and phylogenetic relationships remain poorly known and little studied. The group is currently divided into three orders (O: Alcyonacea, Pennatulacea, and Helioporacea); the large O. Alcyonacea (soft corals and sea fans) is further subdivided into six sub-ordinal groups on the basis of skeletal composition and colony growth form. We used 1429bp of two mitochondrial protein-coding genes, ND2 and msh1, to construct a phylogeny for 103 octocoral genera representing 28 families. In agreement with a previous 18S rDNA phylogeny, our results support a division of Octocorallia into two major clades plus a third, minor clade. We found one large clade (Holaxonia-Alcyoniina) comprising the sea fan sub-order Holaxonia and the majority of soft corals, and a second clade (Calcaxonia-Pennatulacea) comprising sea pens (O. Pennatulacea) and the sea fan sub-order Calcaxonia. Taxa belonging to the sea fan group Scleraxonia and the soft coral family Alcyoniidae were divided among the Holaxonia-Alcyoniina clade and a third, small clade (Anthomastus-Corallium) whose relationship to the two major clades was unresolved. In contrast to the previous studies, we found sea pens to be monophyletic but nested within Calcaxonia; our analyses support the sea fan family Ellisellidae as the sister taxon to the sea pens. We are unable to reject the hypothesis that the calcaxonian and holaxonian skeletal axes each arose once and suggest that the skeletal axis of sea pens is derived from that of Calcaxonia. Topology tests rejected the monophyly of sub-ordinal groups Alcyoniina, Scleraxonia, and Stolonifera, as well as 9 of 14 families for which we sampled multiple genera. The much broader taxon sampling and better phylogenetic resolution afforded by our study relative to the previous efforts greatly clarify the relationships among families and sub-ordinal groups within each of the major clades. The failure of these mitochondrial genes as well as previous 18S rDNA studies to resolve many of the deeper nodes within the tree (including its root) suggest that octocorals underwent a rapid radiation and that large amounts of sequence data will be required in order to resolve the basal relationships within the clade.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular phylogenetic analyses of shallow-water Caribbean octocorals

                Bookmark

                Author and article information

                Journal
                Zookeys
                Zookeys
                ZooKeys
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2018
                2 May 2018
                : 754
                : 63-101
                Affiliations
                [1 ] School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
                [2 ] Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
                [3 ] Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
                Author notes
                Corresponding author: Yehuda Benayahu ( yehudab@ 123456tauex.tau.ac.il )

                Academic editor: B.W. Hoeksema

                Article
                10.3897/zookeys.754.23368
                5943446
                002b23ed-1df7-481c-b107-068a5eca8533
                Yehuda Benayahu, Leen P. van Ofwegen, Catherine S. McFadden

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 January 2018
                : 22 February 2018
                Categories
                Research Article
                Alcyonacea
                Animalia
                Systematics
                Africa
                Asia
                Australasia
                Oceans
                Pacific

                Animal science & Zoology
                indo-pacific ocean,new genera,phylogeny,sclerite microstructure,taxonomy,animalia,alcyonacea,xeniidae

                Comments

                Comment on this article

                scite_

                Similar content401

                Cited by3

                Most referenced authors553