+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melanocortin Regulation of Inflammation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.

          Related collections

          Most cited references 187

          • Record: found
          • Abstract: found
          • Article: not found

          Anatomy and regulation of the central melanocortin system.

           R D Cone (2005)
          The central melanocortin system is perhaps the best-characterized neuronal pathway involved in the regulation of energy homeostasis. This collection of circuits is unique in having the capability of sensing signals from a staggering array of hormones, nutrients and afferent neural inputs. It is likely to be involved in integrating long-term adipostatic signals from leptin and insulin, primarily received by the hypothalamus, with acute signals regulating hunger and satiety, primarily received by the brainstem. The system is also unique from a regulatory point of view in that it is composed of fibers expressing both agonists and antagonists of melanocortin receptors. Given that the central melanocortin system is an active target for development of drugs for the treatment of obesity, diabetes and cachexia, it is important to understand the system in its full complexity, including the likelihood that the system also regulates the cardiovascular and reproductive systems.
            • Record: found
            • Abstract: found
            • Article: not found

            The cloning of a family of genes that encode the melanocortin receptors.

            Melanocyte-stimulating hormone (MSH) and adrenocorticotropic hormone (ACTH) regulate pigmentation and adrenal cortical function, respectively. These peptides also have a variety of biological activities in other areas, including the brain, the pituitary, and the immune system. A complete understanding of the biological activities of these hormones requires the isolation and characterization of their corresponding receptors. The murine and human MSH receptors (MSH-Rs) and a human ACTH receptor (ACTH-R) were cloned. These receptors define a subfamily of receptors coupled to guanine nucleotide-binding proteins that may include the cannabinoid receptor.
              • Record: found
              • Abstract: found
              • Article: not found

              Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor.

              The genetic loci agouti and extension control the relative amounts of eumelanin (brown-black) and phaeomelanin (yellow-red) pigments in mammals: extension encodes the receptor for melanocyte-stimulating hormone (MSH) and agouti encodes a novel 131-amino-acid protein containing a signal sequence. Agouti, which is produced in the hair follicle, acts on follicular melanocytes to inhibit alpha-MSH-induced eumelanin production, resulting in the subterminal band of phaeomelanin often visible in mammalian fur. Here we use partially purified agouti protein to demonstrate that agouti is a high-affinity antagonist of the MSH receptor and blocks alpha-MSH stimulation of adenylyl cyclase, the effector through which alpha-MSH induces eumelanin synthesis. Agouti was also found to be an antagonist of the melanocortin-4 receptor, a related MSH-binding receptor. Consequently, the obesity caused by ectopic expression of agouti in the lethal yellow (Ay) mouse may be due to the inhibition of melanocortin receptor(s) outside the hair follicle.

                Author and article information

                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                09 October 2019
                : 10
                1Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd. , Xiamen, China
                2Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, AL, United States
                Author notes

                Edited by: Alain Couvineau, Institut National de la Santé et de la Recherche Médicale (INSERM), France

                Reviewed by: Lourdes Mounien, Aix-Marseille Université, France; Laurent Gautron, UT Southwestern Medical Center, United States

                *Correspondence: Dong-Yu Guo xiamenhaijin@ 123456163.com

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Copyright © 2019 Wang, Guo, Lin and Tao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 0, Tables: 3, Equations: 0, References: 193, Pages: 15, Words: 12804


                Comment on this article