87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Genome Content Evolution in PVC Bacterial Super-Phylum: Assessment of Candidate Genes Associated with Cellular Organization and Lifestyle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups . We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GenBank

            GenBank® is a comprehensive database that contains publicly available DNA sequences for more than 165 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps to ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deletional bias and the evolution of bacterial genomes.

              Although bacteria increase their DNA content through horizontal transfer and gene duplication, their genomes remain small and, in particular, lack nonfunctional sequences. This pattern is most readily explained by a pervasive bias towards higher numbers of deletions than insertions. When selection is not strong enough to maintain them, genes are lost in large deletions or inactivated and subsequently eroded. Gene inactivation and loss are particularly apparent in obligate parasites and symbionts, in which dramatic reductions in genome size can result not from selection to lose DNA, but from decreased selection to maintain gene functionality. Here we discuss the evidence showing that deletional bias is a major force that shapes bacterial genomes.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2012
                4 December 2012
                December 2012
                4 December 2012
                : 4
                : 12
                : 1375-1390
                Affiliations
                1Department of Molecular Biology, University of Wyoming
                2Department of Botany, University of Wyoming
                3Program in Ecology, University of Wyoming
                Author notes
                *Corresponding author: E-mail: nlward@ 123456uwyo.edu .

                Data deposition: All the sequence data used in this study are available via GenBank.

                Associate editor: Bill Martin

                Article
                evs113
                10.1093/gbe/evs113
                3542564
                23221607
                002dc17c-3f3f-4fd2-9975-8b79df871ad8
                © The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2012
                Page count
                Pages: 16
                Categories
                Research Article

                Genetics
                genome evolution in pvc super-phylum,cellular compartmentalization,duf1501 and planctomycetes-specific cytochromes,mucin-degradation by akkermansia muciniphila

                Comments

                Comment on this article