12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ginsenoside Re Inhibits ROS/ASK-1 Dependent Mitochondrial Apoptosis Pathway and Activation of Nrf2-Antioxidant Response in Beta-Amyloid-Challenged SH-SY5Y Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulation of amyloid-β (Aβ), which results in the formation of senile plaques that cause oxidative damage and neuronal cell death, has been accepted as the major pathological mechanism of Alzheimer’s disease (AD). Hence, inhibition of Aβ-induced oxidative damage and neuronal cell apoptosis represents the effective strategies in combating AD. Ginsenoside Re (Re) has pharmacological effects against Aβ-induced neurotoxicity. However, its molecular mechanism remains elusive. The present study evaluated the effect of Re against Aβ-induced cytotoxicity and apoptosis in SH-SY5Y cells, and investigated the underlying mechanism. We demonstrate that Re inhibits the Aβ-triggered mitochondrial apoptotic pathway, as indicated by maintenance of mitochondrial functional, elevated Bcl-2/Bax ratio, reduced cytochrome c release, and inactivation of caspase-3/9. Re attenuated Aβ-evoked reactive oxygen species (ROS) production, apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, and JNK activation. ROS-scavenging abrogated the ability of Re to alter ASK-1 activation. Simultaneously, inhibition of JNK abolished Re-induced Bax downregulation in Aβ-challenged SH-SY5Y cells. In addition, Re enhanced activation of the nuclear factor-E2-related factor 2 (Nrf2) in Aβ-induced SH-SY5Y cells. Knockdown of Nrf2 by small interfering RNA targeting Nrf2 abolished the protective effect of Re. Our findings indicate that Re could be a potential therapeutic approach for the treatment of AD.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction.

          Mitochondrial dysfunction is one of the major intracellular lesions of Alzheimer's disease (AD). However, the causative factors involved in the mitochondrial dysfunction in human AD are not well understood. Here we report that nonglycosylated full-length and C-terminal truncated amyloid precursor protein (APP) accumulates exclusively in the protein import channels of mitochondria of human AD brains but not in age-matched controls. Furthermore, in AD brains, mitochondrially associated APP formed stable approximately 480 kDa complexes with the translocase of the outer mitochondrial membrane 40 (TOM40) import channel and a super complex of approximately 620 kDa with both mitochondrial TOM40 and the translocase of the inner mitochondrial membrane 23 (TIM23) import channel TIM23 in an "N(in mitochondria)-C(out cytoplasm)" orientation. Accumulation of APP across mitochondrial import channels, which varied with the severity of AD, inhibited the entry of nuclear-encoded cytochrome c oxidase subunits IV and Vb proteins, which was associated with decreased cytochrome c oxidase activity and increased levels of H2O2. Regional distribution of mitochondrial APP showed higher levels in AD-vulnerable brain regions, such as the frontal cortex, hippocampus, and amygdala. Mitochondrial accumulation of APP was also observed in the cholinergic, dopaminergic, GABAergic, and glutamatergic neuronal types in the category III AD brains. The levels of translocationally arrested mitochondrial APP directly correlated with mitochondrial dysfunction. Moreover, apolipoprotein genotype analysis revealed that AD subjects with the E3/E4 alleles had the highest content of mitochondrial APP. Collectively, these results suggest that abnormal accumulation of APP across mitochondrial import channels, causing mitochondrial dysfunction, is a hallmark of human AD pathology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease.

            Oxidative stress reflects an imbalance between the overproduction and incorporation of free radicals and the dynamic ability of a biosystem to detoxify reactive intermediates. Free radicals produced by oxidative stress are one of the common features in several experimental models of diseases. Free radicals affect both the structure and function of neural cells, and contribute to a wide range of neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the precise mechanisms that result in the degeneration of neurons and the relevant pathological changes remain unclear, the crucial role of oxidative stress in the pathogenesis of neurodegenerative diseases is associated with several proteins (such as α-synuclein, DJ-1, Amyloid β and tau protein) and some signaling pathways (such as extracellular regulated protein kinases, phosphoinositide 3-kinase/Protein Kinase B pathway and extracellular signal-regulated kinases 1/2) that are tightly associated with the neural damage. In this review, we present evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease. Proper control and regulation of these proteins' functions and the related signaling pathways may be a promising therapeutic approach to the patients. We also emphasizes antioxidative options, including some new neuroprotective agents that eliminate excess reactive oxygen species efficiently and have a certain therapeutic effect; however, controversy surrounds some of them in terms of the dose and length of therapy. These agents require further investigation by clinical application in patients suffering Parkinson's disease and Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Research priorities to reduce the global burden of dementia by 2025.

              At the First WHO Ministerial Conference on Global Action Against Dementia in March, 2015, 160 delegates, including representatives from 80 WHO Member States and four UN agencies, agreed on a call for action to reduce the global burden of dementia by fostering a collective effort to advance research. To drive this effort, we completed a globally representative research prioritisation exercise using an adapted version of the Child Health and Nutrition Research Initiative method. We elicited 863 research questions from 201 participants and consolidated these questions into 59 thematic research avenues, which were scored anonymously by 162 researchers and stakeholders from 39 countries according to five criteria. Six of the top ten research priorities were focused on prevention, identification, and reduction of dementia risk, and on delivery and quality of care for people with dementia and their carers. Other priorities related to diagnosis, biomarkers, treatment development, basic research into disease mechanisms, and public awareness and understanding of dementia. Research priorities identified by this systematic international process should be mapped onto the global dementia research landscape to identify crucial gaps and inform and motivate policy makers, funders, and researchers to support and conduct research to reduce the global burden of dementia. Efforts are needed by all stakeholders, including WHO, WHO Member States, and civil society, to continuously monitor research investments and progress, through international platforms such as a Global Dementia Observatory. With established research priorities, an opportunity now exists to translate the call for action into a global dementia action plan to reduce the global burden of dementia.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                24 July 2019
                August 2019
                : 24
                : 15
                : 2687
                Affiliations
                Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
                Author notes
                Article
                molecules-24-02687
                10.3390/molecules24152687
                6696356
                31344860
                00475280-9a69-462f-abad-f8783924220a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 June 2019
                : 18 July 2019
                Categories
                Article

                alzheimer’s disease,β-amyloid,ginsenoside re,mitochondria,oxidative stress

                Comments

                Comment on this article