2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Formation and implications of a ternary complex of profilin, thymosin beta 4, and actin.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data from affinity chromatography, analytical ultracentrifugation, covalent cross-linking, and fluorescence anisotropy show that profilin, thymosin beta(4), and actin form a ternary complex. In contrast, steady-state assays measuring F-actin concentration are insensitive to the formation of such a complex. Experiments using a peptide that corresponds to the N terminus of thymosin beta(4) (residues 6-22) confirm the presence of an extensive binding surface between actin and thymosin beta(4), and explain why thymosin beta(4) and profilin can bind simultaneously to actin. Surprisingly, despite much lower affinity, the N-terminal thymosin beta(4) peptide has a very slow dissociation rate constant relative to the intact protein, consistent with a catalytic effect of the C terminus on conformational change occurring at the N terminus of thymosin beta(4). Intracellular concentrations of thymosin beta(4) and profilin may greatly exceed the equilibrium dissociation constant of the ternary complex, inconsistent with models showing sequential formation of complexes of profilin-actin or thymosin beta(4)-actin during dynamic remodeling of the actin cytoskeleton. The formation of a ternary complex results in a very large amplification mechanism by which profilin and thymosin beta(4) can sequester much more actin than is possible for either protein acting alone, providing an explanation for significant sequestration even if molecular crowding results in a very low critical concentration of actin in vivo.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Dec 07 2001
          : 276
          : 49
          Affiliations
          [1 ] Department of Medicine, University of Florida, Gainesville, Florida 32610, USA.
          Article
          S0021-9258(19)37337-5
          10.1074/jbc.M105723200
          11579089
          005b6abf-84ed-4280-9441-760458e5c169
          History

          Comments

          Comment on this article