245
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Outgroup effects on root position and tree topology in the AFLP phylogeny of a rapidly radiating lineage of cichlid fish

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highlights

          • AFLPs resolve the phylogeny of Lake Tanganyika’s benthic deepwater cichlid lineage.

          • The recently proposed tribe Greenwoodochromini is nested within the Limnochromini.

          • The Limnochromini underwent rapid initial radiation into eco-morphologically distinct lineages.

          • Large phylogenetic distances between outgroup and ingroup taxa cause random outgroup effects.

          Abstract

          Phylogenetic analyses of rapid radiations are particularly challenging as short basal branches and incomplete lineage sorting complicate phylogenetic inference. Multilocus data of presence-absence polymorphisms such as obtained by AFLP genotyping overcome some of the difficulties, but also present their own intricacies. Here we analyze >1000 AFLP markers to address the evolutionary history of the Limnochromini, a cichlid fish lineage endemic to Lake Tanganyika, and to test for potential effects of outgroup composition on tree topology. The data support previous mitochondrial evidence on the tribe’s taxonomy by confirming the polyphyly of the genus Limnochromis and – in contradiction to a recent taxonomic revision – nesting the genus Greenwoodochromis within the Limnochromini. Species relationships suggest that ecological segregation occurred during the rapid basal radiation of the Limnochromini. The large phylogenetic distance between candidate outgroup taxa and the Limnochromini radiation caused random outgroup effects. Bootstrap support for ingroup nodes was lower in outgroup-rooted than in midpoint-rooted trees, and root positions and ingroup tree topologies varied in response to the composition of the outgroup. These observations suggest that the predisposition for homoplastic evolution makes AFLP-based phylogenetic analyses particularly susceptible to random biases introduced by too-distant outgroup taxa.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Inferring phylogeny despite incomplete lineage sorting.

          It is now well known that incomplete lineage sorting can cause serious difficulties for phylogenetic inference, but little attention has been paid to methods that attempt to overcome these difficulties by explicitly considering the processes that produce them. Here we explore approaches to phylogenetic inference designed to consider retention and sorting of ancestral polymorphism. We examine how the reconstructability of a species (or population) phylogeny is affected by (a) the number of loci used to estimate the phylogeny and (b) the number of individuals sampled per species. Even in difficult cases with considerable incomplete lineage sorting (times between divergences less than 1 N(e) generations), we found the reconstructed species trees matched the "true" species trees in at least three out of five partitions, as long as a reasonable number of individuals per species were sampled. We also studied the tradeoff between sampling more loci versus more individuals. Although increasing the number of loci gives more accurate trees for a given sampling effort with deeper species trees (e.g., total depth of 10 N(e) generations), sampling more individuals often gives better results than sampling more loci with shallower species trees (e.g., depth = 1 N(e)). Taken together, these results demonstrate that gene sequences retain enough signal to achieve an accurate estimate of phylogeny despite widespread incomplete lineage sorting. Continued improvement in our methods to reconstruct phylogeny near the species level will require a shift to a compound model that considers not only nucleotide or character state substitutions, but also the population genetics processes of lineage sorting. [Coalescence; divergence; population; speciation.].
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address.

            Adaptive radiation refers to diversification from an ancestral species that produces descendants adapted to use a great variety of distinct ecological niches. In this review, I examine two aspects of adaptive radiation: first, that it results from ecological opportunity and, second, that it is deterministic in terms of its outcome and evolutionary trajectory. Ecological opportunity is usually a prerequisite for adaptive radiation, although in some cases, radiation can occur in the absence of preexisting opportunity. Nonetheless, many clades fail to radiate although seemingly in the presence of ecological opportunity; until methods are developed to identify and quantify ecological opportunity, the concept will have little predictive utility in understanding a priori when a clade might be expected to radiate. Although predicted by theory, replicated adaptive radiations occur only rarely, usually in closely related and poorly dispersing taxa found in the same region on islands or in lakes. Contingencies of a variety of types may usually preclude close similarity in the outcome of evolutionary diversification in other situations. Whether radiations usually unfold in the same general sequence is unclear because of the unreliability of methods requiring phylogenetic reconstruction of ancestral events. The synthesis of ecological, phylogenetic, experimental, and genomic advances promises to make the coming years a golden age for the study of adaptive radiation; natural history data, however, will always be crucial to understanding the forces shaping adaptation and evolutionary diversification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Convergent evolution within an adaptive radiation of cichlid fishes.

              The recurrent evolution of convergent forms is a widespread phenomenon in adaptive radiations (e.g., [1-9]). For example, similar ecotypes of anoles lizards have evolved on different islands of the Caribbean, benthic-limnetic species pairs of stickleback fish emerged repeatedly in postglacial lakes, equivalent sets of spider ecomorphs have arisen on Hawaiian islands, and a whole set of convergent species pairs of cichlid fishes evolved in East African Lakes Malawi and Tanganyika. In all these cases, convergent phenotypes originated in geographic isolation from each other. Recent theoretical models, however, predict that convergence should be common within species-rich communities, such as species assemblages resulting from adaptive radiations. Here, we present the most extensive quantitative analysis to date of an adaptive radiation of cichlid fishes, discovering multiple instances of convergence in body and trophic morphology. Moreover, we show that convergent morphologies are associated with adaptations to specific habitats and resources and that Lake Tanganyika's cichlid communities are characterized by the sympatric occurrence of convergent forms. This prevalent coexistence of distantly related yet ecomorphologically similar species offers an explanation for the greatly elevated species numbers in cichlid species flocks. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Phylogenet Evol
                Mol. Phylogenet. Evol
                Molecular Phylogenetics and Evolution
                Academic Press
                1055-7903
                1095-9513
                1 January 2014
                January 2014
                : 70
                : 100
                : 57-62
                Affiliations
                Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, A-8010 Graz, Austria
                Author notes
                [* ]Corresponding author. Fax: +43 316 380 9875. stephan.koblmueller@ 123456uni-graz.at
                [1]

                Present address: Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

                Article
                S1055-7903(13)00347-3
                10.1016/j.ympev.2013.09.005
                3842234
                24055738
                005cf734-39cf-4bc5-a0cb-7380d457112f
                © 2013 The Authors

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 5 December 2012
                : 4 September 2013
                : 6 September 2013
                Categories
                Short Communication

                Evolutionary Biology
                cichlidae,limnochromini,rapid radiation,lake tanganyika,ancient incomplete lineage sorting,outgroup rooting

                Comments

                Comment on this article