8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of nuclear movements in a multinucleated cell

      research-article
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A simple 3D stochastic model captures key features of nuclei movements observed in the hyphae of Ashbya gossypii. These motions are driven by dynein motors pulling on microtubules, similar to the oscillations of the anaphase spindle in budding yeast, but the regulation of the two systems diverged, possibly as a result of evolutionary tinkering.

          Abstract

          Multinucleated cells are important in many organisms, but the mechanisms governing the movements of nuclei sharing a common cytoplasm are not understood. In the hyphae of the plant pathogenic fungus Ashbya gossypii, nuclei move back and forth, occasionally bypassing each other, preventing the formation of nuclear clusters. This is essential for genetic stability. These movements depend on cytoplasmic microtubules emanating from the nuclei that are pulled by dynein motors anchored at the cortex. Using three-dimensional stochastic simulations with parameters constrained by the literature, we predict the cortical anchor density from the characteristics of nuclear movements. The model accounts for the complex nuclear movements seen in vivo, using a minimal set of experimentally determined ingredients. Of interest, these ingredients power the oscillations of the anaphase spindle in budding yeast, but in A. gossypii, this system is not restricted to a specific nuclear cycle stage, possibly as a result of adaptation to hyphal growth and multinuclearity.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape

          Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.

            We have sequenced and annotated the genome of the filamentous ascomycete Ashbya gossypii. With a size of only 9.2 megabases, encoding 4718 protein-coding genes, it is the smallest genome of a free-living eukaryote yet characterized. More than 90% of A. gossypii genes show both homology and a particular pattern of synteny with Saccharomyces cerevisiae. Analysis of this pattern revealed 300 inversions and translocations that have occurred since divergence of these two species. It also provided compelling evidence that the evolution of S. cerevisiae included a whole genome duplication or fusion of two related species and showed, through inferred ancient gene orders, which of the duplicated genes lost one copy and which retained both copies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis.

              Using differential interference contrast optics, combined with cinematography, we have studied the morphological changes that the living, syncytial embryo undergoes from stage 10 through 14 of Drosophila embryogenesis, that is just prior to and during formation of the cellular blastoderm. We have supplemented these studies with data collected from fixed, stained, whole embryos. The following information has been obtained. The average duration of nuclear cycles 10, 11, 12 and 13 is about 9, 10, 12 and 21 min, respectively (25 degrees C). In these four cycles, the duration of that portion of the mitotic period that lacks a discrete nuclear envelope is 3, 3, 3 and 5 min, respectively. The length of nuclear cycle 14 varies in a position-specific manner throughout the embryo, the shortest cycles being of 65 min duration. During nuclear cycles 10 through 13, it is commonly observed in living embryos that the syncytial blastoderm nuclei enter (and leave) mitosis in one of two waves that originate nearly simultaneously from the opposite anterior and posterior poles of the embryo, and terminate in its midregion. From our preparations of quick-frozen embryos, we estimate that these mitotic waves take on average about half a minute to travel over the embryonic surface from pole to equator. The yolk nuclei, which remain in the core of the embryo when the rest of the nuclei migrate to the periphery, divide in synchrony with the migrating nuclei at nuclear cycles 8 and 9, and just after the now peripherally located nuclei at nuclear cycle 10. After cycle 10, these yolk nuclei cease dividing and become polyploid. The syncytial embryo has at least three distinct levels of cytoskeletal organization: structured domains of cytoplasm are organized around each blastoderm nucleus; radially directed tracks orient colchicine-sensitive saltatory transport throughout the peripheral cytoplasm; and a long-range organization of the core of the embryo makes possible coherent movements of the large inner yolk mass in concert with each nuclear cycle. This highly organized cytoplasm may be involved in providing positional information for the important process of nuclear determination that is known to occur during these stages.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 March 2017
                : 28
                : 5
                : 645-660
                Affiliations
                [1] aCell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
                [2] bMolecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
                New York University
                Author notes

                Present address: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.

                F.N., R.G., and A.Z.P. designed the overall project. R.G. and P.P. raised the main biological questions. F.N. and A.Z.P. further developed the Cytosim platform to implement the model. P.P. provided the supporting experimental data and his laboratory’s expertise. R.G. ran all the simulations and did the analysis, supported by F.N. and A.Z.P. R.G., P.P., and F.N. wrote the manuscript with input from A.Z.P. All authors discussed the results and commented on the manuscript.

                *Address correspondence to: François Nédélec ( nedelec@ 123456embl.de ).
                Article
                E16-11-0806
                10.1091/mbc.E16-11-0806
                5328623
                28077618
                005f58e6-37ed-4a0c-aba9-d863970e00fe
                © 2017 Gibeaux et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 22 November 2016
                : 04 January 2017
                : 04 January 2017
                Categories
                Articles
                Cytoskeleton
                A Highlights from MBoC Selection

                Molecular biology
                Molecular biology

                Comments

                Comment on this article