8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of delayed auditory feedback on normal speakers at two speech rates

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigated the effect of short and long auditory feedback delays at two speech rates with normal speakers. Seventeen participants spoke under delayed auditory feedback (DAF) at 0, 25, 50, and 200 ms at normal and fast rates of speech. Significantly two to three times more dysfluencies were displayed at 200 ms (p<0.05) relative to no delay or the shorter delays. There were significantly more dysfluencies observed at the fast rate of speech (p = 0.028). These findings implicate the peripheral feedback system(s) of fluent speakers for the disruptive effects of DAF on normal speech production at long auditory feedback delays. Considering the contrast in fluency/dysfluency exhibited between normal speakers and those who stutter at short and long delays, it appears that speech disruption of normal speakers under DAF is a poor analog of stuttering.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speaking modifies voice-evoked activity in the human auditory cortex.

            The voice we most often hear is our own, and proper interaction between speaking and hearing is essential for both acquisition and performance of spoken language. Disturbed audiovocal interactions have been implicated in aphasia, stuttering, and schizophrenic voice hallucinations, but paradigms for a noninvasive assessment of auditory self-monitoring of speaking and its possible dysfunctions are rare. Using magnetoencephalograpy we show here that self-uttered syllables transiently activate the speaker's auditory cortex around 100 ms after voice onset. These phasic responses were delayed by 11 ms in the speech-dominant left hemisphere relative to the right, whereas during listening to a replay of the same utterances the response latencies were symmetric. Moreover, the auditory cortices did not react to rare vowel changes interspersed randomly within a series of repetitively spoken vowels, in contrast to regular change-related responses evoked 100-200 ms after replayed rare vowels. Thus, speaking primes the human auditory cortex at a millisecond time scale, dampening and delaying reactions to self-produced "expected" sounds, more prominently in the speech-dominant hemisphere. Such motor-to-sensory priming of early auditory cortex responses during voicing constitutes one element of speech self-monitoring that could be compromised in central speech disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study.

              To assess dynamic brain function in adults who had stuttered since childhood, regional cerebral blood flow (rCBF) was measured with H2O and PET during a series of speech and language tasks designed to evoke or attenuate stuttering. Speech samples were acquired simultaneously and quantitatively compared with the PET images. Both hierarchical task contrasts and correlational analyses (rCBF versus weighted measures of dysfluency) were performed. rCBF patterns in stuttering subjects differed markedly during the formulation and expression of language, failing to demonstrate left hemispheric lateralization typically observed in controls; instead, regional responses were either absent, bilateral or lateralized to the right hemisphere. Significant differences were detected between groups when all subjects were fluent-during both language formulation and non-linguistic oral motor tasks-demonstrating that cerebral function may be fundamentally different in persons who stutter, even in the absence of stuttering. Comparison of scans acquired during fluency versus dysfluency-evoking tasks suggested that during the production of stuttered speech, anterior forebrain regions-which play an a role in the regulation of motor function-are disproportionately active in stuttering subjects, while post-rolandic regions-which play a role in perception and decoding of sensory information-are relatively silent. Comparison of scans acquired during these conditions in control subjects, which provide information about the sensorimotor or cognitive features of the language tasks themselves, suggest a mechanism by which fluency-evoking maneuvers might differentially affect activity in these anterior and posterior brain regions and may thus facilitate fluent speech production in individuals who stutter. Both correlational and contrast analyses suggest that right and left hemispheres play distinct and opposing roles in the generation of stuttering symptoms: activation of left hemispheric regions appears to be related to the production of stuttered speech, while activation of right hemispheric regions may represent compensatory processes associated with attenuation of stuttering symptoms.
                Bookmark

                Author and article information

                Journal
                JASMAN
                The Journal of the Acoustical Society of America
                J. Acoust. Soc. Am.
                Acoustical Society of America (ASA)
                00014966
                2002
                2002
                : 111
                : 5
                : 2237
                Article
                10.1121/1.1466868
                12051443
                0076e579-f6cb-46f7-9540-b17453ed17e0
                © 2002
                History

                Comments

                Comment on this article