17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probing Primordial Non-Gaussianity with Large-Scale Structure

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          Nonlinear evolution of long-wavelength metric fluctuations in inflationary models

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters

            WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Lambda-dominated universe seeded by nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. With parameters fixed only by WMAP data, we can fit finer scale CMB measurements and measurements of large scle structure (galaxy surveys and the Lyman alpha forest). This simple model is also consistent with a host of other astronomical measurements. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements and Lyman alpha forest data to find the model's best fit cosmological parameters: h=0.71+0.04-0.03, Omega_b h^2=0.0224+-0.0009, Omega_m h^2=0.135+0.008-0.009, tau=0.17+-0.06, n_s(0.05/Mpc)=0.93+-0.03, and sigma_8=0.84+-0.04. WMAP's best determination of tau=0.17+-0.04 arises directly from the TE data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13.7+-0.2 Gyr. The data favors but does not require a slowly varying spectral index. By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe, Omega_tot = 1.02 +- 0.02, the equation of state of the dark energy w = -1), and the energy density in stable neutrinos, Omega_nu h^2 < 0.0076 (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Galaxy correlation hierarchy in perturbation theory

              J. N. Fry (1984)
                Bookmark

                Author and article information

                Journal
                10 December 2003
                Article
                10.1103/PhysRevD.69.103513
                astro-ph/0312286
                007b65ad-42c2-4d66-8927-6d376a1f17fd
                History
                Custom metadata
                Phys.Rev. D69 (2004) 103513
                15 pages, 7 figures
                astro-ph

                Comments

                Comment on this article