+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C. waterstoni (Hymenoptera: Bethylidae), Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera: Pteromalidae).

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The venom apparatus of four hymenopterous parasitoids, including two bethylids, C. tarsalis (Ashmead) and C. waterstoni (Gahan), and two pteromalids, A. calandrae (Howard) and P. cerealellae (Ashmead), were removed and the associated Dufour glands characterized with respect to their external morphology and chemistry. Dufour glands in all four species have a characteristic translucent appearance that apparently results from their lipid content. The stalked Dufour glands of C. tarsalis and C. waterstoni are pear-shaped and have overall lengths of approximately 0.2 and 0.15 mm, respectively. The thin venom glands are bifurcate and insert through a fine duct into the transparent ovoid- to pear-shaped venom reservoir in these bethylids. In A. calandrae and P. cerealellae the Dufour glands are elongated, tubular structures of ca. 0.35 and 0.8 mm in length, respectively, that constrict to a short stalk that empties into the common oviduct. The venom glands in these pteromalids are simple elongated structures that insert into the sac-like venom reservoir through a fine duct. The chemistry of the volatile contents of the Dufour gland in these four species differs considerably. C. tarsalis Dufour glands contain the same hydrocarbon components as found on the cuticle of this species (Ann. Entomol. Soc. Am. 91:101-112 (1998)), and no other chemicals. The Dufour glands of C. waterstoni also contain only hydrocarbons, most of which are the same as the cuticular hydrocarbons (Ann. Entomol. Soc. Am. 85:317-325 (1992)), but in addition the Dufour gland contains ca. 3% of a mixture of 2,17- and 2,19-dimethyl C(23). A. calandrae Dufour gland chemistry is somewhat more complex than that of either of the two bethylids, but like the bethylids, only hydrocarbons are present. The carbon number range is from C(30) to C(39) and consists of a mixture of n-alkanes (C(30)-C(38)); 3-, 5-, 7-, 9-, 11-, 12-, 13-, 14-, 15- and 17-methyl alkanes; 3,7- and 3,11-dimethyl alkanes; 5,9- and 5,17-dimethyl alkanes; 7,11-, 9,13-, 13,17-, 14,18- and 15,19-dimethyl alkanes; 3,7,11- and 3, 9,15-trimethyl alkanes; and 3,7,11,15-tetramethyl alkanes. The cuticular hydrocarbons of this species have not been previously reported, but they are the same as the Dufour gland hydrocarbons. The Dufour glands of P. cerealellae contain both hydrocarbons and two long-chain aldehydes. Most of the hydrocarbons are identical to those found on the cuticle of this species (Ann. Entomol. Soc. Am. 94:152-158 (2001)), but in addition, 5,9-dimethyl C(27), 5,13-, 5,17- and 5,19-dimethyl C(35), 12- and 14-methyl C(36), 12,16- and 13,17-dimethyl C(36), 13-methyl C(37) and 13,17-dimethyl C(37) are present. The two aldehydes detected in glands from P. cerealellae are n-tetracosanal (C(23)CHO) and n-hexacosanal (C(25)CHO).

          Related collections

          Author and article information

          Comp. Biochem. Physiol. B, Biochem. Mol. Biol.
          Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
          May 2003
          : 135
          : 1
          [1 ] USDA-ARS, GMPRC, 1515 College Avenue, Manhattan, Kansas 66502, USA.


          Comment on this article