99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PMK-1 p38 mitogen-activated protein kinase pathway and the DAF-2–DAF-16 insulin signaling pathway control Caenorhabditis elegans intestinal innate immunity. pmk-1 loss-of-function mutants have enhanced sensitivity to pathogens, while daf-2 loss-of-function mutants have enhanced resistance to pathogens that requires upregulation of the DAF-16 transcription factor. We used genetic analysis to show that the pathogen resistance of daf-2 mutants also requires PMK-1. However, genome-wide microarray analysis indicated that there was essentially no overlap between genes positively regulated by PMK-1 and DAF-16, suggesting that they form parallel pathways to promote immunity. We found that PMK-1 controls expression of candidate secreted antimicrobials, including C-type lectins, ShK toxins, and CUB-like genes. Microarray analysis demonstrated that 25% of PMK-1 positively regulated genes are induced by Pseudomonas aeruginosa infection. Using quantitative PCR, we showed that PMK-1 regulates both basal and infection-induced expression of pathogen response genes, while DAF-16 does not. Finally, we used genetic analysis to show that PMK-1 contributes to the enhanced longevity of daf-2 mutants. We propose that the PMK-1 pathway is a specific, indispensable immunity pathway that mediates expression of secreted immune response genes, while the DAF-2–DAF-16 pathway appears to regulate immunity as part of a more general stress response. The contribution of the PMK-1 pathway to the enhanced lifespan of daf-2 mutants suggests that innate immunity is an important determinant of longevity.

          Synopsis

          The innate immune system provides the first line of defense against pathogen infection and relies upon pathways conserved across mammals, insects, and nematodes. Here, the authors have analyzed the transcriptional response of the nematode Caenorhabditis elegans to infection by the human pathogen Pseudomonas aeruginosa. They investigated this transcriptional response in the context of two conserved pathways involved in pathogen defense: the PMK-1 p38 mitogen-activated protein kinase (p38 MAPK) pathway and the DAF-2–DAF-16 insulin-signaling pathway. Specifically, the authors found that the p38 MAPK pathway plays a critical role in the infection-induced expression of secreted immune response genes. These genes include C-type lectins, lysozymes, and antimicrobial peptides that fight off infection in many species. In contrast, they found that the DAF-16 pathway is not required for immune response gene expression and may regulate immunity as part of a general stress response that functions in parallel to p38 MAPK. In addition, the authors observed that p38 MAPK contributes to the enhanced longevity of daf-2 mutants, implicating p38 MAPK signaling in the regulation of longevity, possibly through its role in immunity.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Specific interference by ingested dsRNA.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.

            A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Symbiotic bacteria direct expression of an intestinal bactericidal lectin.

              The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIgamma, a secreted C-type lectin. RegIIIgamma binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIgamma and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2006
                10 November 2006
                11 September 2006
                : 2
                : 11
                : e183
                Affiliations
                [1 ] Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                [2 ] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [3 ] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [4 ] Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
                [5 ] Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
                Stanford University School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: dhkim@ 123456mit.edu
                Article
                06-PLGE-RA-0292R2 plge-02-11-04
                10.1371/journal.pgen.0020183
                1635533
                17096597
                00b72685-c941-447f-8770-3c8ad67c5ad8
                Copyright: © 2006 Troemel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 July 2006
                : 11 September 2006
                Page count
                Pages: 15
                Categories
                Research Article
                Immunology
                Infectious Diseases
                Genetics/Functional Genomics
                Genetics/Disease Models
                Genetics/Gene Expression
                Nematodes
                Eubacteria
                Custom metadata
                Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, et al. (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2(11): e183. doi:10.1371/journal.pgen.0020183

                Genetics
                Genetics

                Comments

                Comment on this article