32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Tripartite Associations between Bacteriophage, Wolbachia, and Arthropods

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.

          Synopsis

          Symbiotic bacteria that are maternally inherited are widespread in terrestrial invertebrates. Such bacteria infect the cells of reproductive tissues and can have important evolutionary and developmental effects on the host. Often these inherited symbionts develop beneficial relationships with their hosts, but some species can also selfishly alter invertebrate reproduction to increase the numbers of infected females (the transmitting sex of the bacteria) in the population. Bacterial-mediated distortions such as male-killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility are collectively known as “reproductive parasitism.” In this article, the investigators show that the associations between the most common reproductive parasite in the biosphere (Wolbachia) and a parasitic wasp host are affected by a mobile element—a temperate bacteriophage of Wolbachia. In contrast to recent reports that suggest bacteriophage WO-B may induce reproductive parasitism, the authors' quantitative and ultrastructural analyses indicate that lytic phage WO-B are lethal and therefore associate with a reduction in both Wolbachia densities and reproductive parasitism. Based on these data, the authors propose a phage density model in which lytic phage development specifically leads to a reduction, rather than induction, of reproductive parisitism. The study is among the first investigations to show that lytic bacteriophage inversely associate with the densities and phenotype of an obligate intracellular bacterium.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic changes following host restriction in bacteria.

          Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia.

            Wolbachia are cytoplasmically inherited bacteria that cause a number of reproductive alterations in insects, including cytoplasmic incompatibility, an incompatibility between sperm and egg that results in loss of sperm chromosomes following fertilization. Wolbachia are estimated to infect 15-20% of all insect species, and also are common in arachnids, isopods and nematodes. Therefore, Wolbachia-induced cytoplasmic incompatibility could be an important factor promoting rapid speciation in invertebrates, although this contention is controversial. Here we show that high levels of bidirectional cytoplasmic incompatibility between two closely related species of insects (the parasitic wasps Nasonia giraulti and Nasonia longicornis) preceded the evolution of other postmating reproductive barriers. The presence of Wolbachia severely reduces the frequency of hybrid offspring in interspecies crosses. However, antibiotic curing of the insects results in production of hybrids. Furthermore, F1 and F2 hybrids are completely viable and fertile, indicating the absence of F1 and F2 hybrid breakdown. Partial interspecific sexual isolation occurs, yet it is asymmetric and incomplete. Our results indicate that Wolbachia-induced reproductive isolation occurred in the early stages of speciation in this system, before the evolution of other postmating isolating mechanisms (for example, hybrid inviability and hybrid sterility).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microorganisms associated with chromosome destruction and reproductive isolation between two insect species.

              Microorganisms have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps. The effect is typically unidirectional: incompatible crosses produce no progeny or sterile males, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2006
                19 May 2006
                : 2
                : 5
                : e43
                Affiliations
                [1]Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
                Stanford University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: sbordenstein@ 123456mbl.edu

                ¤ Current address: University of Connecticut, Storrs, Connecticut, United States of America

                Article
                05-PLPA-RA-0251R2 plpa-02-05-06
                10.1371/journal.ppat.0020043
                1463016
                16710453
                00bc9968-1bc4-45d7-8b83-a67a63bab066
                Copyright: © 2006 Bordenstein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 December 2005
                : 5 April 2006
                Page count
                Pages: 10
                Categories
                Research Article
                Evolution
                Microbiology
                Virology
                Viruses
                Eubacteria
                Insects
                Custom metadata
                Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2(5): e43. DOI: 10.1371/journal.ppat.0020043

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article