2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphology and phylogeny of scalopine moles (Eulipotyphla: Talpidae: Scalopini) from the eastern Himalayas, with descriptions of a new genus and species

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All scalopine moles are found in North America, except the Gansu mole (Scapanulus oweni), which is endemic to central-west China. In 2019, we collected two specimens of Scalopini on Mt Namjagbarwa in the eastern Himalayas, Tibet, China. We sequenced two mitochondrial (CYT B and 12S) and three nuclear (APOB, BRCA1 and RAG2) genes to estimate the phylogenetic relationships of the two moles, and also compared their morphology with other genera and species within the Scalopini. Both morphological and molecular analyses strongly suggest that the specimens represent a new monotypic genus and species, which are formally described here as Alpiscaptulus medogensis gen. et sp. nov. The dental formula of the new mole (44 teeth) is distinct from the Chinese Scapanulus oweni (36 teeth) and its hairy and pale brown tail is unique among species of the Scalopini. The Kimura-2-parameter (K2P) distances of CYT B between A. medogensis and the four recognized Scalopini genera range from 14.5% to 18.9%. A sister relationship between A. medogensis and Scapanulus oweni was strongly supported in the phylogenetic trees. The divergence between A. medogensis and Scapanulus oweni occurred in the mid-Miocene (c. 11.56 Mya), which corresponds with the rapid uplift of the Himalayan-Tibetan Plateau.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MUSCLE: multiple sequence alignment with high accuracy and high throughput.

            We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends, rhythms, and aberrations in global climate 65 Ma to present.

              Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                October 01 2021
                September 24 2021
                January 08 2021
                October 01 2021
                September 24 2021
                January 08 2021
                : 193
                : 2
                : 432-444
                Affiliations
                [1 ]State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
                [2 ]Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
                Article
                10.1093/zoolinnean/zlaa172
                00bd173a-3706-44d3-9425-1b6b92d25d0e
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article