15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Walterinnesia aegyptia Venom Proteins on TCA Cycle Activity and Mitochondrial NAD +-Redox State in Cultured Human Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1–F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10  μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP +-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50–60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60–70% for fractions F3 and F6. In addition, the crude and fractions F3–F7 venom proteins caused a drop in mitochondrial NAD + and NADP + levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60–70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD + and NADP + biosynthesis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.

          In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals.

            Nicotinamide adenine dinucleotide (NAD) is a classic coenzyme in cellular redox reactions. Recently, NAD biochemistry has also been implicated in a broader range of biological functions in mammals, but the regulation of NAD biosynthesis has been poorly investigated. Recent progress in the field of NAD biochemistry has fueled new interest in the NAD biosynthetic pathways from its precursors and their physiological roles in metabolism. This review summarizes the latest knowledge on the NAD biosynthetic pathways and focuses on one of the key NAD biosynthetic enzymes, namely, nicotinamide phosphoribosyltransferase. Mammals predominantly use nicotinamide rather than nicotinic acid as a precursor for NAD biosynthesis. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that converts nicotinamide to nicotinamide mononucleotide in the NAD biosynthetic pathway from nicotinamide in mammals. The same protein has also been identified as a cytokine (pre-B-cell colony-enhancing factor or PBEF) or an insulin-mimetic hormone (visfatin). We propose that the presumed multiple effects of Nampt/PBEF/visfatin may be entirely explained by its role as an intra and extracellular NAD biosynthetic enzyme. We also propose a new model of Namp/PBEF/visfatin-mediated systemic NAD biosynthesis and its possible physiological significance. Our model provides an important insight into developing preventive/therapeutic interventions for metabolic complications, such as obesity and diabetes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An improved cycling assay for nicotinamide adenine dinucleotide.

                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                1 February 2015
                : 2015
                : 738147
                Affiliations
                1Medical and Molecular Genetics Research Chair, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
                2The Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
                Author notes
                *Mourad A. M. Aboul-Soud: maboulsoud@ 123456ksu.edu.sa

                Academic Editor: Michele Rechia Fighera

                Article
                10.1155/2015/738147
                4331154
                00d29e31-a2cc-484e-907a-d4e5d5a7f6fb
                Copyright © 2015 Hazem K. Ghneim et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 July 2014
                : 27 October 2014
                : 28 October 2014
                Categories
                Research Article

                Comments

                Comment on this article