15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Sparse inverse covariance estimation with the graphical lasso.

          We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Network modelling methods for FMRI.

            There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies.

              Resting-state data sets contain coherent fluctuations unrelated to neural processes originating from residual motion artefacts, respiration and cardiac action. Such confounding effects may introduce correlations and cause an overestimation of functional connectivity strengths. In this study we applied several multidimensional linear regression approaches to remove artificial coherencies and examined the impact of preprocessing on sensitivity and specificity of functional connectivity results in simulated data and resting-state data sets from 40 subjects. Furthermore, we aimed at clarifying possible causes of anticorrelations and test the hypothesis that anticorrelations are introduced via certain preprocessing approaches, with particular focus on the effects of regression against the global signal. Our results show that preprocessing in general greatly increased connection specificity, in particular correction for global signal fluctuations almost doubled connection specificity. However, widespread anticorrelated networks were only found when regression against the global signal was applied. Results in simulated data sets compared with result of human data strongly suggest that anticorrelations are indeed introduced by global signal regression and should therefore be interpreted very carefully. In addition, global signal regression may also reduce the sensitivity for detecting true correlations, i.e. increase the number of false negatives. Concluding from our results we suggest that is highly recommended to apply correction against realignment parameters, white matter and ventricular time courses, as well as the global signal to maximize the specificity of positive resting-state correlations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                31 March 2016
                2016
                : 10
                : 123
                Affiliations
                [1] 1Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University Atlanta, GA, USA
                [2] 2Department of Biostatistics, School of Public Health, University of Michigan Ann Arbor, MI, USA
                Author notes

                Edited by: Brian Caffo, Johns Hopkins University, USA

                Reviewed by: Baxter P. Rogers, Vanderbilt University, USA; Xi Luo, Brown University, USA

                *Correspondence: Ying Guo yguo2@ 123456emory.edu

                This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2016.00123
                4876368
                27242395
                00eb1488-8c77-4ff4-b178-97b93a38ddec
                Copyright © 2016 Wang, Kang, Kemmer and Guo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2015
                : 13 March 2016
                Page count
                Figures: 13, Tables: 6, Equations: 13, References: 45, Pages: 17, Words: 12153
                Categories
                Neuroscience
                Original Research

                Neurosciences
                network analysis,functional connectivity,fmri,partial correlation,precision matrix,clime,l1 regularization

                Comments

                Comment on this article