4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of E-cadherin/Catenin association by tyrosine phosphorylation.

      The Journal of Biological Chemistry

      Animals, Cadherins, metabolism, Cell Adhesion, Cytoskeletal Proteins, Mice, Phosphorylation, Recombinant Proteins, Signal Transduction, Trans-Activators, Tyrosine, beta Catenin

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alteration of cadherin-mediated cell-cell adhesion is frequently associated to tyrosine phosphorylation of p120- and beta-catenins. We have examined the role of this modification in these proteins in the control of beta-catenin/E-cadherin binding using in vitro assays with recombinant proteins. Recombinant pp60(c-src) efficiently phosphorylated both catenins in vitro, with stoichiometries of 1.5 and 2.0 mol of phosphate/mol of protein for beta-catenin and p120-catenin, respectively. pp60(c-src) phosphorylation had opposing effects on the affinities of beta-catenin and p120 for the cytosolic domain of E-cadherin; it decreased (in the case of beta-catenin) or increased (for p120) catenin/E-cadherin binding. However, a role for p120-catenin in the modulation of beta-catenin/E-cadherin binding was not observed, since addition of phosphorylated p120-catenin did not modify the affinity of phosphorylated (or unphosphorylated) beta-catenin for E-cadherin. The phosphorylated Tyr residues were identified as Tyr-86 and Tyr-654. Experiments using point mutants in these two residues indicated that, although Tyr-86 was a better substrate for pp60(c-src), only modification of Tyr-654 was relevant for the interaction with E-cadherin. Transient transfections of different mutants demonstrated that Tyr-654 is phosphorylated in conditions in which adherens junctions are disrupted and evidenced that binding of beta-catenin to E-cadherin in vivo is controlled by phosphorylation of beta-catenin Tyr-654.

          Related collections

          Author and article information

          Journal
          10593980

          Comments

          Comment on this article