25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta-HPV 5 and 8 E6 Promote p300 Degradation by Blocking AKT/p300 Association

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The E6 oncoprotein from high-risk genus alpha human papillomaviruses (α-HPVs), such as HPV 16, has been well characterized with respect to the host-cell proteins it interacts with and corresponding signaling pathways that are disrupted due to these interactions. Less is known regarding the interacting partners of E6 from the genus beta papillomaviruses (β-HPVs); however, it is generally thought that β-HPV E6 proteins do not interact with many of the proteins known to bind to α-HPV E6. Here we identify p300 as a protein that interacts directly with E6 from both α- and β-HPV types. Importantly, this association appears much stronger with β-HPV types 5 and 8-E6 than with α-HPV type 16-E6 or β-HPV type 38-E6. We demonstrate that the enhanced association between 5/8-E6 and p300 leads to p300 degradation in a proteasomal-dependent but E6AP-independent manner. Rather, 5/8-E6 inhibit the association of AKT with p300, an event necessary to ensure p300 stability within the cell. Finally, we demonstrate that the decreased p300 protein levels concomitantly affect downstream signaling events, such as the expression of differentiation markers K1, K10 and Involucrin. Together, these results demonstrate a unique way in which β-HPV E6 proteins are able to affect host-cell signaling in a manner distinct from that of the α-HPVs.

          Author Summary

          Human papillomaviruses (HPVs) are a family of more than 100 different viruses that cause a wide range of pathologies, from benign warts to cervical cancer. One subgroup of HPVs, the beta-HPVs, have recently become a topic of interest due to their potential involvement in squamous cell skin cancer. However, unlike the HPVs involved in cervical cancer, little is known with regards to how the beta-HPVs may facilitate cellular changes that would allow cancerous lesions to develop. Here we have identified a host-cell protein, p300, which interacts strongly with the E6 oncoprotein from two beta-HPVs, HPV 5 and HPV 8. We show that this interaction subsequently blocks another cellular protein, AKT, from binding to and stabilizing p300. By blocking this association, p300 is targeted for degradation, and thus is present in lower amounts than in normal cells. Importantly, because p300 is involved in numerous cell processes such as DNA repair, cell growth, and differentiation, the potential for E6 disrupting a number of cellular signaling pathways is vast. Taken together, our findings shed new light on how the beta-HPVs may facilitate carcinogenesis.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).

          Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CBP/p300 in cell growth, transformation, and development.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA damage activates p53 through a phosphorylation-acetylation cascade.

              Activation of p53-mediated transcription is a critical cellular response to DNA damage. p53 stability and site-specific DNA-binding activity and, therefore, transcriptional activity, are modulated by post-translational modifications including phosphorylation and acetylation. Here we show that p53 is acetylated in vitro at separate sites by two different histone acetyltransferases (HATs), the coactivators p300 and PCAF. p300 acetylates Lys-382 in the carboxy-terminal region of p53, whereas PCAF acetylates Lys-320 in the nuclear localization signal. Acetylations at either site enhance sequence-specific DNA binding. Using a polyclonal antisera specific for p53 that is phosphorylated or acetylated at specific residues, we show that Lys-382 of human p53 becomes acetylated and Ser-33 and Ser-37 become phosphorylated in vivo after exposing cells to UV light or ionizing radiation. In vitro, amino-terminal p53 peptides phosphorylated at Ser-33 and/or at Ser-37 differentially inhibited p53 acetylation by each HAT. These results suggest that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino-terminal phosphorylation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2011
                August 2011
                25 August 2011
                : 7
                : 8
                : e1002211
                Affiliations
                [1 ]Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [2 ]Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
                University of Michigan, United States of America
                Author notes

                Conceived and designed the experiments: HLH DAG. Performed the experiments: HLH JIK LK JW KR GW. Analyzed the data: HLH. Contributed reagents/materials/analysis tools: DAG. Wrote the paper: HLH DAG.

                Article
                PPATHOGENS-D-10-00178
                10.1371/journal.ppat.1002211
                3161984
                21901101
                00fa494c-7970-496a-98bb-78f745714005
                Howie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 October 2010
                : 5 July 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Microbiology
                Host-Pathogen Interaction
                Pathogenesis
                Virology
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Akt Signaling Cascade
                Signaling in Selected Disciplines
                Oncogenic Signaling
                Medicine
                Dermatology
                Skin Neoplasms
                Malignant Skin Neoplasms
                Squamous Cell Carcinomas

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article