19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vitro gamma oscillations following partial and complete ablation of δ subunit-containing GABAA receptors from parvalbumin interneurons.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perisynaptic and extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) mediate tonic conductances in many neurons. On principal cells of the neocortex and hippocampus they comprise α4 subunits, whereas they usually contain α1 on various interneurons. Specific characteristics of δ-GABAARs are their pharmacology and high plasticity. In particular δ-GABAARs are sensitive to low concentrations of neurosteroids (NS) and during times of altered NS production (stress, puberty, ovarian cycle and pregnancy) δ-GABAARs expression varies in many neurons regardless of the α subunits they contain, with direct consequences for neuronal excitability and network synchrony. For example δ-GABAARs plasticity on INs underlies modifications in hippocampal γ oscillations during pregnancy or over the ovarian cycle. Most δ-GABAAR-expressing INs in CA3 stratum pyramidale (SP) are parvalbumin (PV) + INs, whose fundamental role in γ oscillations generation and control has been extensively investigated. In this study we reduced or deleted δ-subunits in PV + INs, with the use of a PV/Cre-Gabrd/floxed genetic system. We find that in vitro CA3 γ oscillations of both PV-Gabrd(+/-)and PV-Gabrd(-/-) mice are characterized by higher frequencies than WT controls. The increased frequencies could be lowered to control levels in PV-Gabrd(+/-) by the NS allopregnanolone (3α,5α-tetrahydroprogesterone, 100 nM) but not the synthetic δ-GABAAR positive allosteric modulator 4-Chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl] benzamide (DS-2, 10 μM). This is consistent with the idea that DS-2, in contrast to ALLO, selectively targets α4/δ-GABAARs but not the α1/δ-GABAARs found on INs. Therefore, development of drugs selective for IN-specific α1/δ-GABAARs may be useful in neurological and psychiatric conditions correlated with altered PV + IN function and aberrant γ oscillations.

          Related collections

          Author and article information

          Journal
          Neuropharmacology
          Neuropharmacology
          1873-7064
          0028-3908
          Jan 2015
          : 88
          Affiliations
          [1 ] Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Interdepartmental Graduate Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, USA.
          [2 ] Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Departments of Physiology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Electronic address: mody@ucla.edu.
          Article
          S0028-3908(14)00317-7 NIHMS631078
          10.1016/j.neuropharm.2014.09.010
          25261782
          010762d7-4c93-4b42-bf71-224bf09f1d7e
          Copyright © 2014 Elsevier Ltd. All rights reserved.
          History

          CA3 interneurons,DS-2,Delta subunit,GABA(A) receptors pharmacology,Gamma oscillations,Neurosteroids,Parvalbumin,Tonic inhibition

          Comments

          Comment on this article