Blog
About

19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice.

          Methods

          Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 10 5 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry).

          Results

          MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization.

          Conclusions

          Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Global data on visual impairment in the year 2002.

          This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic retinopathy: seeing beyond glucose-induced microvascular disease.

            Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Ins2Akita mouse as a model of early retinal complications in diabetes.

              This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P < 0.005), a modest increase in acellular capillaries after 36 weeks of hyperglycemia (P < 0.0008), and alterations in the morphology of astrocytes and microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P < 0.01). After 22 weeks of hyperglycemia, there was a 16.7% central and 27% peripheral reduction in the thickness of the inner plexiform layer, a 15.6% peripheral reduction in the thickness of the inner nuclear layer (P < 0.001), and a 23.4% reduction in the number of cell bodies in the retinal ganglion cell layer (P < 0.005). In vitro insulin receptor kinase activity was reduced (P < 0.05) after 12 weeks of hyperglycemia. The retinas of heterozygous male Ins2(Akita) mice exhibit vascular, neural, and glial abnormalities generally consistent with clinical observations and other animal models of diabetes. In light of the relatively early, spontaneous onset of the disease and the popularity of the C57BL/6J inbred strain as a background for the generation and study of other genetic alterations, combining the Ins2(Akita) mutation with other engineered mutations will be of great use for studying the molecular basis of retinal complications of diabetes.
                Bookmark

                Author and article information

                Contributors
                mezquer@udd.cl
                cristhianurzua@gmail.com
                montecino.scarleth@gmail.com
                k.leal.villegas@gmail.com
                pconget@udd.cl
                (56 2) 327 9425 , eezquer@udd.cl
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                16 March 2016
                16 March 2016
                2016
                : 7
                Affiliations
                [ ]Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162 Chile
                [ ]Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
                Article
                299
                10.1186/s13287-016-0299-y
                4793534
                26983784
                © Ezquer et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funding
                Funded by: FONDECYT GRANT
                Award ID: 1130470
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Comments

                Comment on this article