9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using satellite observations of tropospheric NO<sub>2</sub> columns to infer long-term trends in US NO<sub><i>x</i></sub> emissions: the importance of accounting for the free tropospheric NO<sub>2</sub> background

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The National Emission Inventory (NEI) of the US Environmental Protection Agency (EPA) reports a steady decrease in US NOx emissions over the 2005–2017 period at a rate of 0.1 Tg N a−1 (53 % decrease over the period), reflecting sustained efforts to improve air quality. Tropospheric NO2 columns observed by the satellite-based Ozone Monitoring Instrument (OMI) over the US show a steady decrease until 2009 but a flattening afterward, which has been attributed to a flattening of NOx emissions, contradicting the NEI. We show here that the steady 2005–2017 decrease in NOx emissions reported by the NEI is in fact largely consistent with observed network trends of surface NO2 and ozone concentrations. The OMI NO2 trend is instead similar to that observed for nitrate wet deposition fluxes, which is weaker than that for anthropogenic NOx emissions, due to a large and increasing relative contribution of non-anthropogenic background sources of NOx (mainly lightning and soils). This is confirmed by contrasting OMI NO2 trends in urban winter, where the background is low and OMI NO2 shows a 2005–2017 decrease consistent with the NEI, and rural summer, where the background is high and OMI NO2 shows no significant 2005–2017 trend. A GEOS-Chem model simulation driven by NEI emission trends for the 2005–2017 period reproduces these different trends, except for the post-2009 flattening of OMI NO2, which we attribute to a model underestimate of free tropospheric NO2. Better understanding is needed of the factors controlling free tropospheric NO2 in order to relate satellite observations of tropospheric NO2 columns to the underlying NOx emissions and their trends. Focusing on urban winter conditions in the satellite data minimizes the effect of this free tropospheric background.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ozone monitoring instrument

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increase in tropospheric nitrogen dioxide over China observed from space.

              Emissions from fossil fuel combustion and biomass burning reduce local air quality and affect global tropospheric chemistry. Nitrogen oxides are emitted by all combustion processes and play a key part in the photochemically induced catalytic production of ozone, which results in summer smog and has increased levels of tropospheric ozone globally. Release of nitrogen oxide also results in nitric acid deposition, and--at least locally--increases radiative forcing effects due to the absorption of downward propagating visible light. Nitrogen oxide concentrations in many industrialized countries are expected to decrease, but rapid economic development has the potential to increase significantly the emissions of nitrogen oxides in parts of Asia. Here we present the tropospheric column amounts of nitrogen dioxide retrieved from two satellite instruments GOME and SCIAMACHY over the years 1996-2004. We find substantial reductions in nitrogen dioxide concentrations over some areas of Europe and the USA, but a highly significant increase of about 50 per cent-with an accelerating trend in annual growth rate-over the industrial areas of China, more than recent bottom-up inventories suggest.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2019
                July 12 2019
                : 19
                : 13
                : 8863-8878
                Article
                10.5194/acp-19-8863-2019
                01358f57-9319-46bc-a273-cf6ff03c4d90
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article