Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Organization of cervical cancer screening in Campinas and surrounding region, São Paulo State, Brazil Translated title: Organização do rastreamento do câncer do colo uterino em Campinas e região, São Paulo, Brasil

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Cervical cancer screening remains a challenge in developing countries due to a complex array of problems. This paper aimed to describe the experience with organization of cervical cancer screening in three districts of Campinas and the surrounding region in São Paulo State, Brazil, and to report the resulting data. The program was organized in a pyramid format, and the health care hierarchy was defined according to the complexity and total number of medical procedures. Screening has been extended currently to 88 municipalities, of which 51 are equipped with colposcopy and eight have facilities for treating advanced cervical cancer. The standardized incidence rate for cervical cancer in Campinas was 14.2/100,000 women per year in 1993-1995, and the standardized mortality rate per district ranged from 2.7 to 3.0 per 100,000 women in 1997-1998. This project has clearly shown that hierarchical and decentralized organization of health procedures is a necessary condition for achieving the goals of an effective cervical cancer screening program.

      Translated abstract

      O programa de rastreamento do câncer do colo uterino ainda é um desafio para os países em desenvolvimento devido a uma série complexa de problemas. Este estudo objetivou descrever a experiência adquirida com a organização e mostrar alguns dados sobre o rastreamento deste câncer em três distritos de Campinas e região, São Paulo, Brasil. A hierarquia das ações de saúde foi estabelecida de acordo com a complexidade dos procedimentos e do total destes procedimentos que precisavam ser realizados. Atualmente, o rastreamento se estende a 88 municípios, dos quais 51 realizam colposcopia e oito têm serviços para tratar câncer avançado do colo uterino. A taxa de incidência ajustada em Campinas foi de 14,2/100 mil mulheres por ano em 1993-1995, e a taxa de mortalidade ajustada por distrito variou entre 2,7 e 3,0 por 100 mil mulheres em 1997-1998. De acordo com a experiência adquirida, a organização hierárquica e descentralizada dos procedimentos constituiu-se como condição necessária para alcançar alguns dos objetivos do rastreamento do câncer do colo uterino.

      Related collections

      Most cited references 26

      • Record: found
      • Abstract: found
      • Article: not found

      Effect of screening on incidence of and mortality from cancer of cervix in England: evaluation based on routinely collected statistics.

      To assess the impact of screening on the incidence of and mortality from cervical cancer. Comparison of age specific incidence and mortality before and after the introduction of the national call and recall system in 1988. England. Women aged over 19 years. From the mid-1960s, the number of smears taken rose continuously to 4.5 million at the end of the 1980s. Between 1988 and 1994, coverage of the target group doubled to around 85%. Registrations of in situ disease increased broadly in parallel with the numbers of smears taken. The overall incidence of invasive disease remained stable up to the end of the 1980s, although there were strong cohort effects; from 1990 incidence fell continuously and in 1995 was 35% lower than in the 1980s. The fall in overall mortality since 1950 accelerated at the end of the 1980s; there were strong cohort effects. Mortality in women under 55 was much lower in the 1990s than would have been expected. The national call and recall system and incentive payments to general practitioners increased coverage to around 85%. This resulted in falls in incidence of invasive disease in all regions of England and in all age groups from 30 to 74. The falls in mortality in older women were largely unrelated to screening, but without screening there might have been 800 more deaths from cervical cancer in women under 55 in 1997.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Perceived barriers and benefits to cervical cancer screening in Latin America.

        This article describes the results of studies on the barriers and benefits of cervical cancer screening from the perspective of women, men, and health providers in five Latin American countries and compares them to other findings from the literature. Five separate qualitative studies (focus groups and interviews) were conducted among low-income women in Venezuela, Ecuador, Mexico, El Salvador, and Peru regarding barriers and benefits of cervical cancer screening. Views from health providers and men were also included. The main barriers identified by all participants are accessibility and availability of quality services, facilities that lack comfort and privacy, costs, and courtesy of providers, which interact with poor service delivery. Barriers that pertain to women's beliefs are anxiety borne by women awaiting test results, associated with negligence and fear of cancer (although not to a particular cancer or a particular procedure). Benefits of screening are peace of mind and being in control of their health, which then enable other life activities to continue unhindered. Except for the accessibility and availability of quality services, these results are consistent with findings from other studies in developed and developing countries. Barriers could be lifted if health service delivery was enhanced, for instance, through quality improvement techniques that are available at low cost. Women's anxiety over test results still needs to be further assessed to devise risk communication strategies that take into account broader cultural frameworks. It is to be noted that such strategies should permeate the way health services are provided for cervical cancer prevention regardless of the specific test used. Vulnerability perceived by low-income women with respect to their capacity to cope with diseases and trust the health services and how this affects their perceptions of risk and their behaviors have not been studied as yet. Copyright 2004 The Institute for Cancer Prevention and Elsevier Inc.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Cervical cancer screening programmes and policies in 18 European countries

          BACKGROUND Organised screening programmes for cervical cancer using Pap smears have been shown to be effective in decreasing mortality and incidence from the disease (Fidler et al, 1968; Hakama and Räsänen-Virtanen, 1976; Hakama, 1982; Day, 1986; Läärä et al, 1987; Lynge, 2000). Opportunistic or nonorganised screening also decrease cervical cancer rates, although not to the extent of organised programmes (Magnus and Langmark, 1986; Lynge et al, 1989; Nieminen et al, 1999). One problem with nonorganised screening is that it may not adequately cover the population targeted, sometimes missing those at highest risk (Coleman et al, 1993a). If clinical and diagnostic quality are not monitored and evaluated systematically, as in nonorganised screening, there are also concerns that adverse effects may become more common (Council of the EU, 2003). The goal of an organised programme, along with achieving reasonable effectiveness, is that potential adverse effects are minimised while screening-related improvements in the quality of life maximised. Overuse of services can be prevented and a complete evaluation can be implemented only within the framework of an organised programme. The European Union (EU) currently recommends that cancer screening should only be offered on a population basis in organised screening programmes, with quality assurance at all levels (Council of the EU, 2003). There are also some more detailed recommendations describing the implementation, registration, monitoring, training, compliance, and introduction of novel tests of organised cancer screening programmes (Advisory Committee on Cancer Prevention, 2000; Sankila et al, 2000; Council of the EU, 2003;). Managerial guidelines have also been published by the WHO, and there are guidelines in several areas or individual countries describing how to organise a programme. In Europe, there are wide variations in the organisation of cervical cancer screening activities (Linos et al, ed., 2000). The present study aims to describe the main policy and organisational elements in cervical cancer screening programmes in many European countries, and compare them with the EU and other recommendations. MATERIALS AND METHODS The study is based on a questionnaire survey, collected in late 2003 from 20 European countries within the framework of a collaborative research project of the European Cervical Cancer Screening Network (ECCSN), funded by the Europe Against Cancer programme, and the International Agency for Research on Cancer (IARC), Lyon. The questionnaire survey was conducted in August–December 2003. The present report summarises the current and historical screening situation in Europe. However, as these data were also collected within the framework of interpreting long-term cervical cancer trends at a population level, only European countries or regions for which cervical cancer mortality and/or incidence data met eligibility criteria for the assessment of cervical cancer trends were included. More specifically, countries or regions were selected according to the following criteria: Countries with mortality data available for more than 10 years (not necessarily consecutively) in the WHO mortality database up to 2000, and where ‘Not Otherwise Specified’ uterine cancer deaths accounted for less than 25% of all uterine cancer deaths (these NOS uterine cancer deaths can be redistributed based on the age-specific proportion of registered cervix and corpus cancer deaths (Arbyn and Geys 2002; Bray et al, 2002)). Countries without mortality data meeting the above quality criteria, but for which cervical cancer incidence data of sufficient quality was available, either nationwide, or within a specific region. Criteria for data quality consisted of cancer registry-based incidence data published in at least three consecutive volumes of ‘Cancer incidence in five continents’ from IARC (Parkin et al, 1992, 1997, 2002). Countries meeting criteria for mortality data were: the Czech Republic, Denmark, Estonia, Finland, Hungary, Iceland, Lithuania, Luxembourg, the Netherlands, Norway, Switzerland, and the UK. Countries and regions meeting criteria for incidence data were: France (regional data only, from eight regions: Bas-Rhin, Calvados, Doubs, Herault, Isére, Limousin, Somme, Tarn); Germany (Saarland only); Italy (from four regions: Florence, Parma, Ragusa, Varese, and two cities: Genova, Torino); Poland (Cracow only); Slovakia, Slovenia, Spain (from four regions: Catalonia, Granada, Murcia, Navarra), and Sweden. For countries with only regional incidence data, region-specific information on cervical cancer screening was requested. Emphasis was placed on collecting both current and historical information on the following: Screening policy: Year of programme initiation; target age range of screening; screening interval for women with normal results; financial cost of the smear to the women; Organisational issues: Whether all women in the target population are invited, or only those without a recent smear; the manner in which women are invited (personally or otherwise); the data source from which invitations are drawn; whether invitations and visits are centrally registered on an individual basis; if there had been, historically, important changes in the screening organisation; Process and performance measures: Invitational and geographical coverage of the programme or policy; screening attendance; proportion of women tested at least once within the recommended interval; availability of data on detection rates of histologically confirmed cancerous or precancerous findings, by severity of lesions. We also enquired as to how estimates on screening parameters were collected and calculated in order to assess the reliability of the reported information, and we also searched for all published information on the programmes. Different organisational definitions affect the applicability of the concept, while invitational coverage can apply only among invitational programmes. Another measure of coverage, the proportion of the target population subject to formal programme or policy (van Ballegooijen et al, 2000), was included in the tables. In addition, proportion of women tested at least once within the recommended interval was used. The latter attendance rate is a combined measure of invitational coverage and related attendance, plus noninvitational smear-taking activity. In addition to smears taken within programmes, spontaneous smears taken outside the programme were reported by several centres. Lack of information prevented their inclusion in detail in all performance measures. For those programmes, which registered smears, proportions of women tested at least once during the recommended interval could be calculated from the register-based source. For those programmes that registered only the invitational programme, corresponding estimates were based usually on questionnaire surveys where the reliability of the information may be limited due to reporting and selection biases. Owing to the lack of information, calculations could not be carried out for some other relevant time windows, such as smears during the last 10 year period. The 2003 survey was sent to 35 centres in 20 countries and was completed by 28 centres from 20 countries. In the returned questionnaires from Estonia, Cracow (Poland), and Somme (France), it was reported that no ‘organised programme or otherwise defined screening policy for cervical cancer’ existed and there were no responses to further questions on screening activities. Therefore, these countries/regions were not included in the detailed tables. All the questionnaire information was managed in a database at IARC. RESULTS Details of screening policy are included in Table 1 Table 1 Screening policy in the 18 European countries Country/region Onset of screening programme or policy Age range targeted (since year) Recommended screening interval Charge of smear for the women Recommended number of lifetime smears Czech Republic 1966 Not specified (1966) 1 year Free Not specified Denmark 1967 23–59 (1986) 3 years (some counties 5 years in >45 or 50) Free 13 Finland 1963 30–60 (1993) 5 years Free 7 Hungary 2003, pilot 1997 25–65 (1997) 3 years, after one negative smear Free 15 Iceland 1964 20–69 (1988) 2 years Partial contribution (31 USD) 25 Lithuania 2001 30–60 (2001) 5 years Free or partial contribution (5 euro) 7 Luxembourg 1962 15+ (1990) 1 year Free ∼70 Netherlands 1980 30–60 (1996) 5 years Free 7 Norway 1995, pilot 1992 (programme in one county in 1959–1977) 25–69 (1992) 3 years Partial contribution 15 Slovakia — (intention) 25–64 (—) 3 years Free 14 Slovenia 2003 (1955 opportunistic) 20–64 (2002) 3 years Free 15 Sweden 1967–1973 in different counties, Gothenburg 1977 23–60 (1999) 3 years in ages 23–50 years; 5 years in ages 51–60 years Complete contribution in most counties; free or partial in some counties 12 Switzerland No data 18–69 (—) 3 years Partial contribution 18 UK 1988 20–64 (1988, under review) 3–5 years (currently 3 years in ages 25–49 years and 5 years in ages 50–64 years) Free 10–17 (12) France            Bas-Rhin 1994 25–65 (1990) 3 years Partial contribution 14  Doubs 1993 20–65 (1993) 3 years (after two normal exams with 1 year interval) Reimbursement 17  Isére 1990 50–69 (1990) 3 years Free 7 Germany            Saarland 1971 20–85+ (1982) 1 year Free ∼65 Italy            Florence 1982 25–64 (1995) 3 years Free 14  Genova 1992 25–64 (1992) 3 years Free 14  Parma 1998 25–64 (1998) 3 years Free 14  Ragusa No data 25–64 (1996) 3 years Free 14  Torino 1992 25–64 (1992) 3 years Free 14  Varese No data 25–64 (1996) 3 years Free 14 Spain            Catalonia No data 20–64 (1993) 3–5 years: initially two smears 1 year apart. Then, 3 years in ages 20–34 years and 5 years in ages 35–64 years Free or partial contribution 12 , irrespective of whether organised, spontaneous, or nonspecific screening programmes were in place. Six countries (the Czech Republic, Denmark, Finland, Iceland, Luxembourg, Sweden) reported having started screening in the 1960s, whereas 10 other countries or regions (Hungary, Lithuania, Norway, Slovenia, Bas-Rhin, Doubs, Isere, Genova, Parma, Torino) had started at least a pilot by 2003. There were large differences in target age range and interval. Recommended lifetime number of smears varied from seven (Finland, Lithuania, Netherlands, Isere) to more than 50 (Luxembourg, Germany). The cost covered by the screened women varied widely. In most of the regions (17 out of 25; 68%), screening was free of charge for the women but in several programmes payment practices varied even within the programme, depending on the area or mode of screening activity. Six countries/regions had invitational programmes (Finland, Hungary, the Netherlands, Isére, Parma, Torino), whereas nine countries/regions (Denmark, Iceland, Norway, Slovenia, Swdeden, United Kingdom, Bas-Rhin, Doubs, Florence) invited only those women who had not had a smear (usually opportunistic) recently or within the recommended interval (Table 2 Table 2 Organisation characteristics in screening for cervical cancer in the 18 European countries Country/region Are women in the target population invited personally to participate? How women are invited/smears offered Source of personal invitations Is screening registered on an individual basis? Information available on screen-detected histological findings? Remarks Czech Republic No Opportunity — No No   Denmark Yes, only women without a recent smear Letter or opportunity Population, pathology and health insurance registries No national registration. Varies between counties, most have all smears and histology in the county pathology register No Organised screening was introduced gradually county-wise. Information on screening and histological findings can be collected as a research activity Finland Yes Letter Population registry Yes, centrally, invitational programme Yes Organised screening introduced gradually during 1963–1970; invitational coverage almost complete since 1971 Hungary Yes Letter Social security register and health insurance funds Yes, centrally, invitational programme No   Iceland Yes, only women without a recent smear Letter or opportunity Population registry Yes, centrally, all Yes Computerised call-recall system from 1964. About 70% of smears in 2000 were from the invitational programme Lithuania No (yes in some regions) Opportunity, announcements, mass media Health service registers Yes, centrally (in 10 out of 60 regions), invitational programme Yes   Luxembourg No Opportunity — Yes, most of them at the national health laboratory Yes Reorganisations in 1980 and 1990 Netherlands Yes Letter Population registry Yes, both centrally and regionally, all Yes   Norway Yes, only women without a recent smear Letter or opportunity Population registry Yes, centrally, all Yes   Slovakia No (yes in some districts) Letter or opportunity Health service registers No No   Slovenia Yes, only women without a recent smear Letter or opportunity Population and health service registers Yes, centrally, all Yes (under construction)   Sweden Yes, only women without a recent smear Letter or opportunity Population registry Yes, regionally, all. A central register under construction Yes (under construction)   Switzerland No Opportunity — — No   UK Yes, only women without a recent smear Letter or opportunity Health services register Yes, centrally and regionally, all Yes Computerised call-recall in 1988. Target incentive payments to GPs since 1990. National coordination and quality assurance introduced in 1995 France              Bas-Rhin Yes, only women without a recent smear Letter or opportunity Health service register Yes, regionally, all Yes    Doubs Yes, only women without a recent smear Letter and/or campaign Social security register Yes, regionally, all No data    Isére Yes Letter Social security register Yes, regionally, invitational programme No data Pap smear screening in connection with breast cancer screening Germany              Saarland No Smears offered through health insurance scheme — No No   Italy              Florence Yes, only women without a recent smear Letter or opportunity Population registry Yes, regionally, all Yes    Genova No Opportunity — No No    Parma Yes Letter Population and health service register Yes, regionally, invitational programme Yes    Ragusa No Opportunity — No No    Torino Yes Letter Population registry Yes, regionally, invitational programme Yes    Varese No Opportunity — No No Screening campaigns in the past within part of the area Spain              Catalonia No Opportunity — No Yes   ). The other regions did not invite women, but screening was offered mainly at the occasion of a visit to a general practitioner or gynaecologist. All of the six fully invitational programmes also had a centralised national or regional screening registration database arranged on an individual basis. Five of these registers included only the invitational programme and one (the Netherlands) included any smears. From among the programmes with partial invitations, two programmes (Denmark, Sweden) did not have a centralised national registration unit. The rest of the national programmes with a partial invitational activity reported a central national registration system, and these registers aimed to include all smears, whether taken after invitation or otherwise. Of the 10 countries/regions with opportunistic screening policies, eight were without screening registration and two had partial registration. Smear test coverage above 80% of the target population during the recommended screening interval was reported in three national programmes (Finland, Sweden, UK); and the smear coverage was 75–80% in three countries (Denmark, Iceland, the Netherlands). A total of 11 programmes reported collection of information on histologically confirmed lesions (Table 2). Six of these programmes reported detection rates by grade of the histological finding (Finland, Iceland, Norway, Bas-Rhin, Florence, Torino) and one country (the Netherlands) did not separate invasive cancers from the CIN3 (Table 3 Table 3 Process and performance values in screening for cervical cancer in the 18 European countries       Detection rate (%) Country/region Population subject to formal programme (in ages 25–64 years unless specified) Women screened within recommended interval (%), any smears included (in ages 25–64 years in 2000 unless specified) Invasive (ICC) CIN3 CIN1-2 Czech republic No data No data No data No data No data Denmark 90% (23–59) 75% (23–59, 1997) No data No data No data Finland 100% (30–60) 93% (35–64, 1997) 0.01 0.13 0.21 Hungary No data 30% No data No data No data Iceland 100% 76% within a 3-year interval (25–69) 0.015 0.47 0.27 Lithuania No data No data No data No data No data Luxembourg No data 39% (1 year, 1999)a No data No data No data Netherlands 100% (30–60)b 77% (30–60, 1997)b No data 0.35 (incl. CIN3+) 0.13 Norway 100% 70% 0.04c 0.50c 0.79c Slovakia No data No data No data No data No data Slovenia 31% in 2000 70% No data No data No data Sweden 100%b 83 (23–59; 1997)b No data No data No data Switzerland No data No datad No data No data No data UK 100% 83% No data No data No data France            Bas-Rhin No data 69%e 0.05 0.35 0.73  Doubs 88% >50% No data No data No data  Isére No data 69% (50–69, 1996) No data No data No data Germany            Saarland 90%b 50% per year (20+; 1996); 80% within 3 yearsb No data No data No data Italy            Florence 100% 73% 0.008 0.13 0.12  Genova No data 53%f No data No data No data  Parma 100% 66% No data No data No data  Ragusa No data 53%f No data No data No data  Torino 100% >74% 0.011 0.09 0.14  Varese No data 53%6 No data No data No data Spain            Catalonia No data No data 0.04 0.06 0.8 a From Scheiden et al (2000). b From Van Ballegooijen et al (2000); whole Germany. c In 1998, from The Cancer Registry of Norway (2001). d 80% ever-screened (18–75; 1997). e From Schaffer et al (2000). f No regional data. Italian national estimate 1999/2000. ). Histological information was also reported from Catalonia, a region with opportunistic activity only. No published routine monitoring information was available for other programmes. There was a wide variability in the rates between the seven programmes from 0.008 to 0.04% for invasive cancer, from 0.06 to 0.50% for CIN3, and from 0.12 to 0.8% for CIN1-2. CIN3 : invasive cancer detection ratios ranged from 1.5 to 12. DISCUSSION The European Union has currently recommended that cancer screening should only be offered on a population basis in organised screening programmes, with quality assurance at all levels (Council of the EU, 2003). There are also more detailed recommendations that are valuable in relation to organisational aspects (Advisory Committee on Cancer Prevention, 2000; Council of the EU, 2003). The present questionnaire-based survey indicates that these recommendations are met in only a few European countries. The most serious inadequacies relate, according to our survey, to: (1) low or inadequate coverage of the screening test within the populations targeted; (2) shortcomings in routine registration, evaluation, and monitoring; and (3) excessive numbers of lifetime smears recommended. There also exist relatively short screening intervals that are not justified as present knowledge of the natural history of cervical cancer, particularly on the duration of precancerous stage. Such aspects as payment strategies, possibly affecting attendance, varied greatly, indicating a potential for inequality. Incidence and mortality rates from cervical cancer can be decreased by at least 80% by means of screening. This has been shown from follow-up studies of women screened negative (Day, 1986), cohort follow-up studies among screened women (Fidler et al, 1968; Hakama and Räsänen-Virtanen, 1976; Lynge, 2000), and population-based follow-up studies (Hakama 1982; Day, 1986; Läärä et al, 1987). Declines of this order have been observed in Canada (British Columbia) (Anderson et al, 1988) and in Finland and Iceland (Läärä et al, 1987; Sigurdsson, 1999; Anttila and Läärä, 2000). In the other Nordic countries, decreases of between 40 and 60% have been reported (Sigurdsson, 1999), while the reduction tends to be of a somewhat lower order of magnitude in other regions and countries (Coleman et al, 1993b; Beral et al, 1994). Information is variable and often very limited, however, concerning the screening activities or incidence or death rates before the assumed time that screening started. These data as well as the current estimates of cervical cancer in Europe (Bray et al, 2002) suggest that meaningful additional decreases in the cervical cancer rates are still possible. It is important therefore to utilise the available data continually to monitor cervical incidence and mortality rates in these populations. The current data were obtained from areas covered by long-standing cancer registries. Therefore, they may not be representative of the entire European situation. Frequently there is a link between pilot programmes for cervical cancer screening and cancer registration, given the utility of the latter using planning and screening evaluation. For example in France, all three existing regional programmes were in areas with a cancer registry considered to satisfy minimal quality assurance prerequisites. The study may thus overestimate the presence of organised programmes. The reported CIN3 detection rates varied eight-fold. This can be expected to result in t differences in related treatment rates. These differences are apparently not explained by differential screening intervals or age ranges. Variation in the background risk could provide a partial explanation, but the variations in cancer to CIN3 detection ratios suggest that differential diagnostic and registration criteria may play a major role. The disadvantages of cancer screening include: anxiety among those screened positive or treated for a lesion, complications, potential of unnecessary medical interventions (e.g. among false-positives), overtreatment of questionable or nonprogressive abnormalities, costs incurred, longer morbidity for cases whose prognosis is unaltered, and also false reassurance that can result in delayed presentation or investigation of symptoms for persons with false-negative test results (Hakama, 1991; Bennetts et al, 1995; Lauver et al, 1999; Peters et al, 1999; Rogstad, 2002; Idestrom et al, 2003). Quality-of-life and potential adverse aspects should be included in the evaluation of the screening programmes. These also represent important aspects to be considered for any potential new screening techniques to be implemented in programmes. Several Eastern European countries, which had established cancer registries, were included in this questionnaire study, but most had not implemented an organised screening programme. It should be noted that mortality rates are uniformly increasing in several countries in this region (Beral et al, 1994; IARC, 2002). Whenever possible, cancer registries should be involved in the planning and monitoring of screening programmes. Availability of local resources needs to be carefully taken into account. Given limited screening resources, the programme should be started in a few age groups, with high coverage being prioritised. In general, there are large variations in European cervical cancer screening policies and in the organisation of programmes. Limited details are available on process and performance measures, and their correlation with effectiveness is not known. In particular, registration, monitoring, and evaluation are deficient. The EU Council recommendation states that ‘subsequent monitoring and data collection on the extent to which the proposed measures are working effectively need to be arranged for the next 3-year period’. Decision-makers and health-care service providers need to consider stronger measures and incentives than the current recommendations in order to deliver successful cervical cancer control in Europe.
            Bookmark

            Author and article information

            Affiliations
            [1 ] Universidade Estadual de Campinas Brazil
            [2 ] Universidade Estadual de Campinas Brazil
            [3 ] Universidade de São Paulo Brazil
            Contributors
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Journal
            csp
            Cadernos de Saúde Pública
            Cad. Saúde Pública
            Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (Rio de Janeiro )
            1678-4464
            September 2006
            : 22
            : 9
            : 1909-1914
            S0102-311X2006000900022

            http://creativecommons.org/licenses/by/4.0/

            Product
            Product Information: SciELO Brazil
            Categories
            Health Policy & Services

            Comments

            Comment on this article