15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial dysfunction is associated with many human diseases, including cancer and neurodegeneration, that are often linked to proteins and pathways that are not well-characterized. To begin defining the functions of such poorly characterized proteins, we used mass spectrometry to map the proteomes, lipidomes and metabolomes of 174 yeast strains, each lacking a single gene related to mitochondrial biology. 144 of these genes have human homologs, 60 of which are associated with disease and 39 of which are uncharacterized. We present a multi-omic data analysis and visualization tool that we use to find covariance networks that can predict molecular functions, correlations between profiles of related gene deletions, gene-specific perturbations that reflect protein functions, and a global respiration deficiency response. Using this multi-omic approach, we link seven proteins including Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases. This Resource should provide broad molecular insights into mitochondrial protein functions.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional discovery via a compendium of expression profiles.

            Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Charting a course for genomic medicine from base pairs to bedside.

              There has been much progress in genomics in the ten years since a draft sequence of the human genome was published. Opportunities for understanding health and disease are now unprecedented, as advances in genomics are harnessed to obtain robust foundational knowledge about the structure and function of the human genome and about the genetic contributions to human health and disease. Here we articulate a 2011 vision for the future of genomics research and describe the path towards an era of genomic medicine.
                Bookmark

                Author and article information

                Journal
                9604648
                20305
                Nat Biotechnol
                Nat. Biotechnol.
                Nature biotechnology
                1087-0156
                1546-1696
                31 August 2016
                26 September 2016
                November 2016
                26 March 2017
                : 34
                : 11
                : 1191-1197
                Affiliations
                [1 ]Morgridge Institute for Research, Madison, Wisconsin, USA.
                [2 ]Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA.
                [3 ]Genome Center of Wisconsin, Madison, Wisconsin, USA.
                [4 ]Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA.
                [5 ]Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA.
                Author notes
                [7]

                These authors jointly supervised this work.

                Correspondence should be addressed to D.J.P. ( dpagliarini@ 123456morgridge.org ) or J.J.C. ( jcoon@ 123456chem.wisc.edu )
                Article
                NIHMS813406
                10.1038/nbt.3683
                5101133
                27669165
                01499aa9-dbe1-4b82-b27f-e0f2aff0e831

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article