15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      When Should the Emphasis on Schistosomiasis Control Move to Elimination?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stated goal of the World Health Organization’s program on schistosomiasis is paraphrased as follows: to control morbidity and eliminate transmission where feasible. Switching from a goal of controlling morbidity to interrupting transmission may well be currently feasible in some countries in the Caribbean, some areas in South America, northern Africa, and selected endemic areas in sub-Saharan Africa where there have been improvements in sanitation and access to clean water. However, in most of sub-Saharan Africa, where programmatic interventions still consist solely of annual mass drug administration, such a switch in strategies remains premature. There is a continued need for operational research on how best to reduce transmission to a point where interruption of transmission may be achievable. The level of infection at which it is feasible to transition from control to elimination must also be defined. In parallel, there is also a need to develop and evaluate approaches for achieving and validating elimination. There are currently neither evidence-based methods nor tools for breaking transmission or verifying that it has been accomplished. The basis for these statements stems from numerous studies that will be reviewed and summarized in this article; many, but not all of which were undertaken as part of SCORE, the Schistosomiasis Consortium for Operational Research and Evaluation.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study.

          Schistosomiasis is a snail-borne parasitic disease endemic in several tropical and subtropical countries. However, in the summer of 2013, an unexpected outbreak of urogenital schistosomiasis occurred in Corsica, with more than 120 local people or tourists infected. We used a multidisciplinary approach to investigate the epidemiology of urogenital schistosomiasis in Corsica, aiming to elucidate the origin of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sensitivity and Specificity of a Urine Circulating Anodic Antigen Test for the Diagnosis of Schistosoma haematobium in Low Endemic Settings

            Background Elimination of schistosomiasis as a public health problem and interruption of transmission in selected areas are key goals of the World Health Organization for 2025. Conventional parasitological methods are insensitive for the detection of light-intensity infections. Techniques with high sensitivity and specificity are required for an accurate diagnosis in low-transmission settings and verification of elimination. We determined the accuracy of a urine-based up-converting phosphor-lateral flow circulating anodic antigen (UCP-LF CAA) assay for Schistosoma haematobium diagnosis in low-prevalence settings in Zanzibar, Tanzania. Methodology A total of 1,740 urine samples were collected in 2013 from children on Pemba Island, from schools where the S. haematobium prevalence was <2%, 2–5%, and 5–10%, based on a single urine filtration. On the day of collection, all samples were tested for microhematuria with reagent strips and for the presence of S. haematobium eggs with microscopy. Eight months later, 1.5 ml of urine from each of 1,200 samples stored at -20°C were analyzed by UCP-LF CAA assay, while urine filtration slides were subjected to quality control (QCUF). In the absence of a true ‘gold’ standard, the diagnostic performance was calculated using latent class analyses (LCA). Principal Findings The ‘empirical’ S. haematobium prevalence revealed by UCP-LF CAA, QCUF, and reagent strips was 14%, 5%, and 4%, respectively. LCA revealed a sensitivity of the UCP-LF CAA, QCUF, and reagent strips of 97% (95% confidence interval (CI): 91–100%), 86% (95% CI: 72–99%), and 67% (95% CI: 52–81%), respectively. Test specificities were consistently above 90%. Conclusions/Significance The UCP-LF CAA assay shows high sensitivity for the diagnosis of S. haematobium in low-endemicity settings. Empirically, it detects a considerably higher number of infections than microscopy. Hence, the UCP-LF CAA employed in combination with QCUF, is a promising tool for monitoring and surveillance of urogenital schistosomiasis in low-transmission settings targeted for elimination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Defining Persistent Hotspots: Areas That Fail to Decrease Meaningfully in Prevalence after Multiple Years of Mass Drug Administration with Praziquantel for Control of Schistosomiasis

              Abstract. Preventive chemotherapy with praziquantel for schistosomiasis morbidity control is commonly done by mass drug administration (MDA). MDA regimen is usually based on prevalence in a given area, and effectiveness is evaluated by decreases in prevalence and/or intensity of infection after several years of implementation. Multiple studies and programs now find that even within well-implemented, multiyear, annual MDA programs there often remain locations that do not decline in prevalence and/or intensity to expected levels. We term such locations “persistent hotspots.” To study and address persistent hotspots, investigators and neglected tropical disease (NTD) program managers need to define them based on changes in prevalence and/or intensity. But how should the data be analyzed to define a persistent hotspot? We have analyzed a dataset from an operational research study in western Tanzania after three annual MDAs using four different approaches to define persistent hotspots. The four approaches are 1) absolute percent change in prevalence; 2) percent change in prevalence; 3) change in World Health Organization guideline categories; 4) change (absolute or percent) in both prevalence and intensity. We compare and contrast the outcomes of these analyses. Our intent is to show how the same dataset yields different numbers of persistent hotspots depending on the approach used to define them. We suggest that investigators and NTD program managers use the approach most suited for their study or program, but whichever approach is used, it should be clearly stated so that comparisons can be made within and between studies and programs.
                Bookmark

                Author and article information

                Journal
                Trop Med Infect Dis
                Trop Med Infect Dis
                tropicalmed
                Tropical Medicine and Infectious Disease
                MDPI
                2414-6366
                15 August 2018
                September 2018
                : 3
                : 3
                : 85
                Affiliations
                [1 ]Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; was4@ 123456cdc.gov
                [2 ]Center for Tropical and Emerging Global Diseases and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
                Author notes
                [* ]Correspondence: dcolley@ 123456uga.edu ; Tel.: +1-706-542-4112
                Author information
                https://orcid.org/0000-0003-0584-5961
                Article
                tropicalmed-03-00085
                10.3390/tropicalmed3030085
                6161309
                30274481
                01554c83-4887-45c5-8a66-ce292a614ddb
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 June 2018
                : 10 August 2018
                Categories
                Review

                schistosomiasis,control,elimination,africa,operational research,goals,guidelines

                Comments

                Comment on this article

                scite_

                Similar content247

                Cited by14

                Most referenced authors345