24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ADMA and oxidative stress.

      Atherosclerosis. Supplements
      Arginine, analogs & derivatives, metabolism, pharmacology, physiology, Cardiovascular Diseases, physiopathology, Endothelium, Vascular, Enzyme Inhibitors, Humans, Nitric Oxide Synthase, drug effects, Oxidative Stress, Vasodilation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elevated plasma concentrations of the endogenous nitric oxide synthase (eNOS) inhibitor asymmetric dimethylarginine (ADMA) represent a novel risk factor for the development of endothelial dysfunction and a predictor for all-cause and cardiovascular mortality. However, it is unknown whether elevated ADMA plasma concentrations may be considered simply as a marker for cardiovascular disease or whether increased ADMA levels per se may predispose to the development of vascular disease. There is experimental and clinical evidence linking endothelial dysfunction to increased production of oxygen-derived free radicals such as superoxide anion. Oxidative stress has been shown to increase the activity of arginine methylating and ADMA degrading enzymes leading to increased ADMA concentrations. Interestingly, the endothelial nitric oxide synthase may become uncoupled in the presence of high ADMA levels further contributing to the vascular oxidative stress burden. It remains to be established to what extent ADMA is able to interact with eNOS in vivo. Possible mechanisms underlying increased oxidative stress in the setting of elevated ADMA concentrations and therapeutic implications will be discussed.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease.

          Endothelial function is impaired in coronary artery disease and may contribute to its clinical manifestations. Increased oxidative stress has been linked to impaired endothelial function in atherosclerosis and may play a role in the pathogenesis of cardiovascular events. This study was designed to determine whether endothelial dysfunction and vascular oxidative stress have prognostic impact on cardiovascular event rates in patients with coronary artery disease. Endothelium-dependent and -independent vasodilation was determined in 281 patients with documented coronary artery disease by measuring forearm blood flow responses to acetylcholine and sodium nitroprusside using venous occlusion plethysmography. The effect of the coadministration of vitamin C (24 mg/min) was assessed in a subgroup of 179 patients. Cardiovascular events, including death from cardiovascular causes, myocardial infarction, ischemic stroke, coronary angioplasty, and coronary or peripheral bypass operation, were studied during a mean follow-up period of 4.5 years. Patients experiencing cardiovascular events (n=91) had lower vasodilator responses to acetylcholine (P<0.001) and sodium nitroprusside (P<0.05), but greater benefit from vitamin C (P<0.01). The Cox proportional regression analysis for conventional risk factors demonstrated that blunted acetylcholine-induced vasodilation (P=0.001), the effect of vitamin C (P=0.001), and age (P=0.016) remained independent predictors of cardiovascular events. Endothelial dysfunction and increased vascular oxidative stress predict the risk of cardiovascular events in patients with coronary artery disease. These data support the concept that oxidative stress may contribute not only to endothelial dysfunction but also to coronary artery disease activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.

            The signaling pathways involved in the long-term metabolic effects of angiotensin II (Ang II) in vascular smooth muscle cells are incompletely understood but include the generation of molecules likely to affect oxidase activity. We examined the ability of Ang II to stimulate superoxide anion formation and investigated the identity of the oxidases responsible for its production. Treatment of vascular smooth muscle cells with Ang II for 4 to 6 hours caused a 2.7 +/- 0.4-fold increase in intracellular superoxide anion formation as detected by lucigenin assay. This superoxide appeared to result from activation of both the NADPH and NADH oxidases. NADPH oxidase activity increased from 3.23 +/- 0.61 to 11.80 +/- 1.72 nmol O2-/min per milligram protein after 4 hours of Ang II, whereas NADH oxidase activity increased from 16.76 +/- 2.13 to 45.00 +/- 4.57 nmol O2-/min per milligram protein. The NADPH oxidase activity was stimulated by exogenous phosphatidic and arachidonic acids and was partially inhibited by the specific inhibitor diphenylene iodinium. NADH oxidase activity was increased by arachidonic and linoleic acids, was insensitive to exogenous phosphatidic acid, and was inhibited by high concentrations of quinacrine. Both of these oxidases appear to reside in the plasma membrane, on the basis of migration of the activity after cellular fractionation and their apparent insensitivity to the mitochondrial poison KCN. These observations suggest that Ang II specifically activates enzyme systems that promote superoxide generation and raise the possibility that these pathways function as second messengers for long-term responses, such as hypertrophy or hyperplasia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.

              Coronary endothelial dysfunction is characterized by vasoconstrictive response to the endothelium-dependent vasodilator acetylcholine. Although endothelial dysfunction is considered an early phase of coronary atherosclerosis, there is a paucity of information regarding the outcome of these patients. Thus, this study was designed to evaluate the outcome of patients with mild coronary artery disease on the basis of their endothelial function. Follow-up was obtained in 157 patients with mildly diseased coronary arteries who had undergone coronary vascular reactivity evaluation by graded administration of intracoronary acetylcholine, adenosine, and nitroglycerin and intracoronary ultrasound at the time of diagnostic study. Patients were divided on the basis of their response to acetylcholine into 3 groups: group 1 (n=83), patients with normal endothelial function; group 2 (n=32), patients with mild endothelial dysfunction; and group 3 (n=42), patients with severe endothelial dysfunction. Over an average 28-month follow-up (range, 11 to 52 months), none of the patients from group 1 or 2 had cardiac events. However, 6 (14%) with severe endothelial dysfunction had 10 cardiac events (P<0.05 versus groups 1 and 2). Cardiac events included myocardial infarction, percutaneous or surgical coronary revascularization, and/or cardiac death. Severe endothelial dysfunction in the absence of obstructive coronary artery disease is associated with increased cardiac events. This study supports the concept that coronary endothelial dysfunction may play a role in the progression of coronary atherosclerosis.
                Bookmark

                Author and article information

                Comments

                Comment on this article