16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Parental genomic imprinting of the human IGF2 gene.

      Nature genetics
      Alleles, Animals, Base Sequence, Deoxyribonucleases, Type II Site-Specific, Gene Expression Regulation, Gestational Age, Heterozygote, Humans, Insulin-Like Growth Factor II, genetics, Mice, Molecular Sequence Data, Parents, Placenta, chemistry, Polymorphism, Restriction Fragment Length, Prader-Willi Syndrome, RNA, Messenger, Species Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mouse igf2 gene, coding for the insulin-like growth factor II (IGF-II) is parentally imprinted, only the gene copy derived from the father is expressed. To know whether IGF2, the human homologue, is also imprinted, we used an ApaI polymorphism at the 3' untranslated region in order to distinguish between mRNA derived from each copy of the gene in placentae from heterozygote human fetuses, studied after careful removal of the decidua. Six term and two pre-term placentae of heterozygotes were studied, and in each case the cDNA contained only one of the two alleles present in the genomic DNA. In three cases the mother was homozygous for the non-expressed allele, allowing assignment of paternal origin to the transcribed gene copy. We conclude that, as in the mouse, human IGF2 is parentally imprinted.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parental imprinting of the mouse insulin-like growth factor II gene.

            We are studying mice that carry a targeted disruption of the gene encoding insulin-like growth factor II (IGF-II). Transmission of this mutation through the male germline results in heterozygous progeny that are growth deficient. In contrast, when the disrupted gene is transmitted maternally, the heterozygous offspring are phenotypically normal. Therefore, the difference in growth phenotypes depends on the type of gamete contributing the mutated allele. Homozygous mutants are indistinguishable in appearance from growth-deficient heterozygous siblings. Nuclease protection and in situ hybridization analyses of the transcripts from the wild-type and mutated alleles indicate that only the paternal allele is expressed in embryos, while the maternal allele is silent. An exception is the choroid plexus and leptomeninges, where both alleles are transcriptionally active. These results demonstrate that IGF-II is indispensable for normal embryonic growth and that the IGF-II gene is subject to tissue-specific parental imprinting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.

              Growth factors are thought to function as pivotal autocrine-paracrine regulatory signals during embryonic development. Insulin-like growth factor II (IGF-II), a mitogenic polypeptide for a variety of cell lines, could have such a role, as indicated by the pattern of expression of its gene during rodent development. The IGF-II gene uses at least three promoters and expresses several transcripts in many tissues during the embryonic and neonatal periods, whereas expression in adult animals is confined to the choroid plexus and the leptomeninges. To examine the developmental role of IGF-II, we have begun to study the consequences of introducing mutations at the IGF-II gene locus in the mouse germ line. We have disrupted one of the IGF-II alleles in cultured mouse embryonic stem (ES) cells by gene targeting and constructed chimaeric animals. Germ-line transmission of the inactivated IGF-II gene from male chimaeras yielded heterozygous progeny that were smaller than their ES cell-derived wild-type littermates (about 60% of normal body weight). These growth-deficient animals were otherwise apparently normal and fertile. The effect of the mutation was exerted during the embryonic period. These results provide the first direct evidence for a physiological role of IGF-II in embryonic growth.
                Bookmark

                Author and article information

                Comments

                Comment on this article