17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterns of Evolutionary Conservation of Essential Genes Correlate with Their Compensability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability—that is, by how easily they can be functionally replaced, for example through increased expression of other genes.

          Author Summary

          In any given organism, a fraction of all genes in the genome are required for viability; if they are experimentally deleted, the organism dies. Interestingly, the set of essential genes is usually not identical even for closely related organisms. Genes that are essential in one organism are sometimes nonessential in sister taxa or even missing from their genomes. This suggests that, in the course of evolution, some genes can be rendered non-essential and consequently can be lost. How can genes become non-essential? It is possible that changes in an organism's living conditions render previously essential functions unessential. Alternatively, it is possible that, during evolution, the function of an essential gene can be taken over by another gene, so that the essential gene becomes dispensable. Here, we tested the second hypothesis experimentally in the laboratory. We tried to replace the functions of essential genes in the bacterium Escherichia coli. We find that the genes that can easily be replaced in the laboratory are also more likely to be lost in the course of evolution. This suggests that differences in the evolutionary fate between essential genes can be partially explained by how easily their functions can be taken over by other genes.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Identification of common molecular subsequences.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.

              Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2012
                June 2012
                28 June 2012
                : 8
                : 6
                : e1002803
                Affiliations
                [1 ]Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
                [2 ]Department of Environmental Microbiology, Eawag, Dubendorf, Switzerland
                [3 ]Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
                Université Paris Descartes, INSERM U1001, France
                Author notes

                ¤: Current address: IST Austria, Klosterneuburg, Austria

                Conceived and designed the experiments: TB MA OKS. Performed the experiments: TB. Analyzed the data: TB MA OKS. Contributed reagents/materials/analysis tools: TB OKS. Wrote the paper: TB MA OKS.

                Article
                PGENETICS-D-12-00263
                10.1371/journal.pgen.1002803
                3386227
                22761596
                01b7c10d-f910-4e2f-a913-648b18571cc3
                Bergmiller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 January 2012
                : 12 May 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Microbiology

                Genetics
                Genetics

                Comments

                Comment on this article