14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Propagation of Tau via Extracellular Vesicles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs), like exosomes, play a critical role in physiological processes, including synaptic transmission and nerve regeneration. However, exosomes in particular can also contribute to the development of neurodegenerative conditions such as Alzheimer’s disease (AD), Parkinson’s disease, and prion diseases. All of these disorders are characterized by protein aggregation and deposition in specific regions of the brain. Several lines of evidence indicate that protein in exosomes is released from affected neurons and propagated along neuroanatomically connected regions of the brain, thus spreading the neurodegenerative disease. Also, different cell types contribute to the progression of tauopathy, such as microglia. Several groups have reported tau release via exosomes by cultured neurons or cells overexpressing human tau. Although the exact mechanisms underlying the propagation of protein aggregates are not fully understood, recent findings have implicated EVs in this process. The AD brain has two hallmarks, namely the presence of amyloid-β-containing plaques and neurofibrillary tangles, the latter formed by hyperphosphorylated tau protein. Both amyloid peptide and tau protein are present in specific exosomes. This review summarizes recent advances in our understanding of exosomes in the pathology of AD, with a special focus on tau protein.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Trans-cellular propagation of Tau aggregation by fibrillar species.

          Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exosomes: Mechanisms of Uptake

            Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non-immune cell types (e.g., cancer cells) and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of paramount importance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain

              The neuronal microtubule-associated protein tau is required for the development of cell polarity in cultured neurons. Using PC12 cells that stably express tau and tau amino-terminal fragments, we report that tau interacts with the neural plasma membrane through its amino-terminal projection domain. In differentiated PC12 transfectants, tau is found in growth cone-like structures in a nonmicrotubule-dependent manner. In hippocampal neurons, tau is differentially extracted by detergent and enriched in the growth cone and the distal axon when membrane is left intact. In PC12 transfectants, overexpression of tau's amino-terminal fragment, but not of full-length tau, suppresses NGF-induced process formation. Our data suggest that tau's amino-terminal projection domain has an important role in neuritic development and establishes tau as a mediator of microtubule-plasma membrane interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                02 July 2019
                2019
                : 13
                : 698
                Affiliations
                [1] 1Departamento de Anatomía Histología y Neurociencia, Facultad de Medicina UAM , Madrid, Spain
                [2] 2Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
                [3] 3Centro de Biología Molecular Severo Ochoa (CSIC-UAM) , Madrid, Spain
                Author notes

                Edited by: Grant Thomas Corbett, Harvard Medical School, United States

                Reviewed by: Ioannis Sotiropoulos, University of Minho, Portugal; Rostislav Skrabana, Institute of Neuroimmunology (SAS), Slovakia

                *Correspondence: Félix Hernández, fhernandez@ 123456cbm.csic.es

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.00698
                6614378
                31312118
                01bbe902-da5d-44ef-891e-97bf00b50c7f
                Copyright © 2019 Pérez, Avila and Hernández.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 April 2019
                : 19 June 2019
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 82, Pages: 7, Words: 0
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                tau propagation,extracellular vesicle,neurodegenerative disease,tau protein,alzheimer’s disease

                Comments

                Comment on this article